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INTRODUCTION 

This volume is a twelve-month interim report on a continuing 
study of a fault-tolerant multiprocessor architecture for aircraft, 
sponsored by the NASA Langley Research Center, Flight Instrumentation 
Division. The Technical Contract Monitor was Mr. Nicholas D. Murray. 
The work reported here-was performed in the NASA/Army Department of the 
Draper Laboratory, with support from the Computer Science Division and 
the MIT Flight Transportation Laboratory. The project engineer was 
Dr. T. Basil Smith, III. The work period was May, 1975 to April, 1976. 

A fault-tolerant multiprocessor architecture evolved at the 
Draper Laboratory under various sponsors from 1966 to the present time. 
This architecture, together with a comprehensive information system 
architecture, has important potential for future aircraft applications. 
This report is directed at the preliminary definition and assessment of 
a suitable multiprocessor architecture for such applications. The 
architectureis strongly driven by a requirement for extremely remote 
probability of system failure. Throughout this report, it is 
hypothesized that the computer's failure rate will be designed below 
lo-g failures per hour in flights of up to ten hours duration, with a 
preferred goal of 10 -10 failures per hour. 

Summary of Conclusions 

The following important conclusions have developed during and/or 
as a result of the work reported here. 

The architectural principles of the multiprocessor have been 
demonstrated in an experimental configuration with a commercial aircraft 
simulation. The basic fault detection, diagnosis, and reconfiguration 
strategies are operational, and have undergone at least a superficial 
validation. 



Future aircraft improvements in performance and economy are 
strongly contingent on the development of dependable information 
processing systems, and in some cases on integrated systems. The fault- 
tolerant multiprocessor appears to be a near-term candidate upon which 
to base a dependable integrated system. Airline practice, computer 
sizing, software, technology, and reliability issues have been investi- 
gated in this context and found to be compatible with the architecture. 

A systematic approach to aircraft performance and survival is to 
use a distributed system with redundant sensors and effecters, dedicated 
local processing, highly dependable data communications, and a highly 
dependable central computer. The multiprocessor architecture is 
strongly compatible with such a system, although more than one multi- 
processor may be required in order to achieve a high level of damage 
tolerance. 

Reliability model predictions indicate that computer maintenance 
can usually be postponed for at least tens of hours following a module 
failure by the inclusion of one or more extra spare modules of each type. 
As long as certain minimum criteria are met before each takeoff, it 
should be possible to achieve a computer failure probability of the 
order of 10 -9 in a ten-hour flight. This wi'll depend critically on 
module MTBF'S, which would have to be greater than is typical of current 
avionics practice. Methodologies do exist, however, for achieving the 
necessary MTBF's. Another key factor in achieving the low computer 
failure rate is the rate at which the computer can be reconfigured and 
subjected to self test. This architecture lends itself well, by virtue 
of its low degree of processor dedication. 

Project Structure 

The following tasks were treated in the work period. 

TASK 1: Multiprocessor Architecture Evaluation 
A. Establish New Baseline (Chapters 1,2,4,6,9) 
B. Reliable Software (Chapter 6) 
C. Reliability Modeling (Chapter 5) 
D. Minimum Configuration (Chapter 10) 
E. Demonstration (Chapter 10) 

TASK 2: Appraisal of Aircraft Operating Environment 
A. Cost and Effectiveness (Chapter 3) 
B. Computational Requirements (Chapter 3, 9) 
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C. System Integration (Chapter 3) 

TASK 3: Technology Assessment (Chapters 7, 8). 

Organization of This Volume 

The first two chapters serve as a tutorial review of the system 
and multiprocessor architecture, as updated during the work period. 

Chapter 3 presents a summary of the activity devoted to studying 
the aircraft application, primarily by the MIT Flight Transportation 
Laboratory. 

Chapters 4 through 9 treat specific issues relevant to the 
architecture, including reliability, software, technologies, and sizing. 

Chapter 10 describes a physical emulation of a multiprocessor 
of this type, and its use in an autopilot demonstration under fault 
injection conditions. 
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I II I III 

CHAPTER 1 

SYSTEM CONTEXT 

This chapter is concerned with the architectural considerations 
for a highly reliable and available multiprocessor computer for on- 
board integrated system management. A highly reliable computer is 
necessary, but not sufficient, for the implementation of life-critical 
control functions such as active controls, total fly-by-wire, and total 
system management. Therefore, before taking up the multiprocessor's 
architectural details, we will consider its significance in the context 
of the whole aircraft. 

1.1 Sensors and Effecters 

For purposes of information processing analysis, it is appro- 
priate to regard the aircraft as a system of sensors and effecters, 
where information processing elements derive inputs from sensors and 
generate control signals to effecters. Effecters, which are displays 
and actuators, operate upon the man-machine environment via dynamics 
and human responses, producing effects that are measured by sensors. 
Figure 1.1 illustrates this model. 

A significant point of departure from this model occurs at the 
next lower level of abstraction in contemporary systems, in that 
redundancy occurs in the form of independent and often dissimilar sub- 
systems, as shown in Fig. 1.2. Subsystem failure is a routine occur- 
rence, and in most cases has less than a catastrophic impact on flight 
safety. To implement,systems in this manner, the flight crew is employ- 
ed as a system.integrator, with ultimate responsibility for failure 
detection, identification and recovery for the vehicle. The use of 
human judgements and responses in this manner constrains the design and 
utilization of the aircraft and its operational parameters, as for 
example the static stability, structural strength, traffic headways, 
etc. 
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The implementation of substantially more sophisticated and 
autonomous controls calls for capabilities that are apt to require the 
creation of an integrated system. The incorporation of'adequate redun- 
dancy and contingency into integrated systems poses significant problems, 
however. This is the issue which we now address, in the context of the 
system model of Fig. 1.1. 

Since one can never rule out the occurrence of unlikely events, 
one must resort to probabilistic criteria for system design. Given that 
sensor and effector subsystem failures will occur in routine fashion, 
we seek a number of characteristics in subsystem and system design that 
enhance the probability of system survival. Without going into detail, 
one can identify broad chracteriaations such as Mean Time Between 
Failure (MTBF), failure independence (i.e. absence of correlation among 
failures in distinct subsystems), and robustness in the sense of re- 
covering from all failures for which it might potentially be possible 
to recover. The last of these items is not directly quantifiable. It 
requires the anticipation of all permutations of failures that will 
occur in the lifetime of a fleet of systems, and the creation of 
"contingency modes" of operation. 

The desir'able characteristics mentioned in the preceding 
paragraph for systems and subsystems suggest the following design 
philosophy for critical integrated systems. First, sensors and 
effecters should be diversified to the point where failure correlations 
are adequately small. Diversification should not be excessive, however, 
as it is counterproductive to the second objective, modularity. 
Modularity means the use of identical modules for multiple functions as 
well as redundancy, and serves MTBF, logistics, and contingencies. 
Modularity is beneficial in the contingency sense, as it tends to 
minimize the variety of contingencymodes as well as to make it easier 
to create algorithms to cover families of contingencies. 

With adequate diversification and substantial modularity, an 
integrated system can combine high survival with systematic utilization 
of resources. To the extent that contingency modes are algorithmic, 
the potential exists for supplanting or replacing the judgement factor 
of current systems with mechanized information processing. Thus we 
arrive at the third objective of the design philosophy, which is to have 
an information handling medium that is reliable and available to a 
degree of probability well in excess of that required for the survival 
of the aircraft itself. 



The structure of a suitably dependable information processing 
system is the sub.ject for the remainder of this chapter. Prior to clos- 
ing this section, however, it should be pointed out that the information 
system embraces both non-critical subsystems and critical self survival. 
A significant aspect of the system architecture, therefore, involves 
the assignment of redundancy and survivability to the distributed 
portions of the system. 

1.2 Local Processing 

The highly survivable information system whose motivation was . 
established in the preceding section could in principle be located in a 
single enclosure, with dedicated connections to each sensor and 
effector. As a practical matter, a certain degree of distribution of 
the information system is inevitable. Most of the sensors in use today 
as well as those envisioned for the future rely on electronics for 
manipulation, interpretation, and perhaps testing. In times past, the 
notion of system integration carried the implication of using a single 
large computer on a shared basis for as much of the information proces- 
sing as possible. This attitude reflected the high risk and cost of 
digital computers. In the contemporary view, by contrast, the digital 
computer is less costly and less risky, particularly when it is used 
for functions of limited size and sophistication. Consequently, rather 
than try.ing to push information processing towards a central facility, 
the tendency today is to take advantage of the specialized electronics 
for each subsystem, but also the use of an appropriate amount of 
digital computer processing local to, and/or dedicated to, the subsystem. 
The fact that subsystems are individually non-critical makes it possible 
to eliminate fault tolerance as a local processing requirement, provided 
that the MTBF of the processing equipment is at least commensurate with 
that of the remainder of the subsystem. 

The localization and "deLcriticalization" of some of the infor- 
mation processing functions of the system carries a substantial list 
of benefits, as follows: 

1. Bandwidth and Reaction Speed 

A central computing facility is a good way to share resources 
such as memory capacity and sophisticated processing, but it is a poor 
way to accommodate a mixture of these things along with a requirement 
for high data bandwidths and fast reaction speeds. Fortunately for the 
system architect, the majority of high bandwidth and fast reaction 
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operations are, or can be, dedicated to a sensor, an effector, or a 
sensor-effector subsystem. The use of local processing relieves a fault- 
tolerant central computer of a speed requirement that it is ill-equipped 
to handle, especially given its principal burdens of self survival. 

2. Task Switching Overheads 

A related benefit of local processing stems from the penalty 
incurred in time-sharing a central computer among numerous small tasks. 
The overhead consists of software, execution time, and propensity for 
data interference. 

3. Simplex vs. Redundant 

Where local processing can be simplex (non-redundant), a direct 
cost saving accrues purely on the basis that the mass of redundant hard- 
ware is thereby made smaller. 

4. Software Partitioning 

By partitioning the software for dedicated subsystem functions 
into dedicated computers, one realizes several advantages. First, it 
becomes easier to manage the software generation, in that different 
programming organizations can generate software for different sub- 
systems using different languages and different computers, should these 
be appropriate. Second, the operating system software of a small 
computer dedicated to a modest functional scope can become simplified 
almost to the point of non-existence. Finally, the system is made 
change-tolerant, by virtue of the isolation afforded by separate 
computers. That is, the only software needing re-validation after a 
change is that software co-resident with the changed software in the 
same computer. 

5. Uniform Interfaces 

In furtherance of the aim to employ modularity, the liberal 
adoption of local information processing tends to support the creation 
of uniform interfaces among subsystems. Such interfaces would be 
digital, with the possibility of employing codes or echo checks, and 
would be suitable for dedicated links, buses, and data networks alike. 
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To sum up the issues of local processing, it has been found that 
local information processing, including digital processing, can be 
beneficial for a highly survivable integrated control system. Such 
distribution of digital computers is clearly feasible at present; 
indeed, there appears to be an accelerated growth in the number of 
instances of digital processing in avionics sensors and effecters. 

1.3 Data Communications and Information System Structure 

At this point in the discussion it has been established that the 
information processing system possesses non-redundant, non-critical 
elements local to subsystems, but that the information system as a 
whole is highly survivable. We have implied that the non-critical fail- 
ures will be few enough in number on any given flight so that valid 
contingencies exist and can be found. Exceptions are to be highly 
improbable. Survival of the aircraft will require the survival of 
minimum levels of sensors and effecters, motive power, structural 
integrity, and the information system. Survival of the information 
system will require not only the survival of minimum levels of local 
processing for sensors and effecters, but will further require the 
survival of system integrity, which is an unambiguous successful 
collaboration of surviving modules. 

Whereas system integrity can in principle be embodied in a wholly 
distributed system to some degree, the subject system architecture 
employs a fault-tolerant central computer for the maintenance of system 
integrity. This computer also serves those digital computation functions 
that are non-dedicated, i.e. which involve the coordination of separate 
subsystems. Between the central computer and the local processors is a 
data communication facility, which is composed of non-critical elements, 
but whose partial survival is critical. The information system structure 
is shown in Fig. 1.3. 

We distinguish three different fundamental fault-tolerant data 
communications structures, They are the dedicated, or star connection 
of Fig. 1.4a, the redundant bus connection of Fig. 1.4b, and the net- 
work connection of Fig. 1.4~. Each approach has pro and con character- 
istics, which will not be treated here in detail, but rather briefly 
discussed. 

Dedicated connections are simplex in most cases. The failure of 
one such connection affects at most one non-critical subsystem. The 
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requirements imposed on the central computer's interface will be taken 
up in the next chapter. The growth potential of dedicated links is 
halted once the central computer's enclosure has been built. They 
moreover tend to under-utilize the interface electronics and connection 
medium. Their advantage over the other two approaches is their inherent 
graceful degradation. 

A redundant bus abandons graceful degradation, but it better 
utilizes equipment and it has good growth potential. An individual 
element can fail so as to make one simplex bus useless. An N-redundant 
bus can in principle support (~-1) failures, if they are uncorrelated. 
The use of dispersed bus couplers rather than direct subsystem-bus 
interfaces tends to minimize bus failure correlations. The nominal 
topology of a bus is such that point-to-point links are not useful. 
Variants such as rings, however, can use point-to-point links. This 
issue is raised because of the degree to which fiber optics are con- 
sidered promising for lightning strike immunity. So far, only point-to- 
point fiber optics links have appeared to have a solid foundation. 

The network is in some senses a compromise between dedicated 
and bus connections. The network topology is such that the loss of 
numerous links is tolerable. The network's linkage mass is comparable 
to that of the redundant bus, because the network does not need full 
replication as does the bus. In this respect the network is like the 
dedicated approach, Error detection is necessary for achieving this, 
however, which will impose some overhead on the method. Other overheads 
exist in the form of switching hardware at each node and management 
software in the central computer. Equipment utilization is more or less 
comparable to that of the bus, and bus protocols are used for network 
data handling 111. 

It may be presumed that all three of these methods will employ 
serial data transmission, and that the interface to each subsystem 
will be comparable, albeit not identical, for the different methods. 
The interface at the central computer's end is virtually identical for 
the three systems, differing only in the number of input-output access 
modules needed. There is no reason why all three of these methods can- 
not be used in different parts of the same system. 

13 



1.4 Central Computing and System Management 

This final section of the chapter on System Context will serve 
to introduce the material of the subsequent chapters describing archi- 
tecture, reliability, and performance of the central multiprocessor. 

The point has already been made that the survival of the air- 
craft depends not only on the survival of a suitable minimum subset of 
the sensors and effecters, but also on the ability of the system to 
"mobilize" them into coordinated action. Such mobilization has a 
redundancy management aspect wherein data access is maintained. It 
also has a contingency aspect, wherein the vehicle dynamics are con- 
trolled via surviving effecters on the basis of information derived 
from surviving sensors. The adoption of a fault-tolerant central 
computer into the system structure makes it possible to assign both the 
redundancy management and the contingencies in an unambiguous way to a 
hardware-software entity whose failure and nonavailability are highly 
improbable. 

One can characterize the central computer, then, as having a 
primary function of simply surviving, along with the functions of 
system redundancy management and contingency management. In addition 
to these functions, the central computer has other natural system roles 
owing to its hierarchical position in the information system structure. 
These roles include the coordination of sensor-effector activities, of 
which a digital autopilot is an excellent example. In some cases this 
function alone can account for a substantial fraction of the central 
computing resources. Another role is that of command, where there may 
or may not be interaction with the flight crew. This can be viewed 
somewhat abstractly as the maintenance of system order and purpose by 
the delegation of tasks to hierarchically subordinate function centers 
both within and without the central computer. 

The architecture of the central computer is strongly driven by 
the urgency of preserving a valid data stream. Failure to do so could 
have catastrophic consequences, such as loss of the aircraft state 
vector, loss of configuration data, or loss of command. For this 
reason, every piece of data that is transferred, processed, or stored, 
is manipulated in triplicate. That is, every processor, memory, and 
internal bus is operated together with two others in a group denoted a 
"triad." When a triad delivers a piece of data, three copies of the 
data are delivered, one from each triad member. The recipient of the 
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data is also a triad, each member of which has access to all three 
copies of the data. Each member of the recipient triad makes an inde- 
pendent determination, by voting, of the correct version of the data it 
receives. If all copies agree, the correct version is obtained from 
any of the copies. If one copy disagrees, the correct version is taken 
to be the majority function of the copies. This methodology is the 
well-known and familiar triple-modular redundancy (TMR) approach. 

The central computer is a variant of the classical TMR structure 
in two ways. First, it is able to replace failed triad members with 
spare modules. This particular variation of TMR is another well-known 
and familiar approach, called hybrid redundancy. The second variation 
is the use of, parallelism in the processors and to a certain extent in 
the memories. Parallelism is a significant dimension because it permits 
spares to be pooled, and it permits testing to be conducted on some 
modules while the rest of them are engaged in critical on-line functions. 

The parallel-hybrid TMR structure is potentially capable of 
having a high degree of fault tolerance and high system reliability. 
It is a costly approach in comparison to a simplex computer, not only 
because of its hardware triplication, but also because of overheads 
produced by its parallelism. Nevertheless, this approach is strongly 
to be recommended, because of several factors: 

1. Alternate structures, less expensive in principle, have other 
cost sources that are not immediately obvious. 

2. Procurement, maintenance, logistics, and reliability are all 
favorably impacted by the use of many small processors as 
opposed to one large one, 

3. The economy of sparing is very high in this approach. 

4. This is the only approach known by the authors to be capable 
of the degree of latent fault exposure that is required to 
achieve the desired degree of survivability. 

There is no unique parallel-hybrid computer design. It can be a 
multiprocessor, a multicomputer, or a combination of the two. Additional- 

lY, numerous architectural alternatives exist. The next chapter 
describes a design approach based on a multiprocessor structure. 

As a final note on the system role of the central computer, this 
element, like any other system element, can be made redundant for 
purposes of surviving physical damage. For a life-critical application, 
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it is likely that this would be done, with perhaps two central 
computers in two different locations in the aircraft. 
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CHAPTER 2 

THE ARCHITECTURE OF A PARALLEL-HYBRID 
REDUNDANT MULTIPROCESSOR 

The multiprocessor architecture described in this chapter is one 
that needs to meet severe dependability requirements while at the same 
time providing substantial throughput with moderate hardware cost. The 
approach taken was to use conventional processors and conventional 
memories interconnected in such a way that no single-point failures 
exist, that failed modules can be retired and replaced automatically, 
and that as little as possible need be assumed about the nature of 
random failures. 

The architecture has several dimensions. The first area to be 
discussed is the architecture as viewedbythe programmer, where for the 
most part the redundancy of the computer is invisible. A subsequent 

' section treats the redundancy aspect of the computer, followed by 
sections dealing with synchronization, configuration, and fault manage- 
ment. 

2.1 Nominal Organization 

A multiprocessor, loosely defined, is a computer with several 
processors and a single (possibly multiport) memory accessible to all 
processors. In the extreme, all instructions and data reside in memory 
available to any processor, so that processors are "anonymous." Given 
a suitable state vector, any processor can execute any procedure from 
any starting point. Motiviations for multiprocessors are typically to 
increase productivity and availability at the same time, although 
these two purposes are largely competitive. At any rate, parallelism 
is intrinsic to the multiprocessor, as each processor is able to 
execute a different concurrent procedure subject to limitations imposed 
by resource sharing and sequential constraints on the procedures. 
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2.1.1 Memory Access 

A "canonical form" of a multiprocessor is illustrated in Fig. 2.1 
which introduces the notion of memory private to each processor in 
addition to the common memory. The rationale for this private, or 
cache, memory stems from the limitations imposed on parallel operation 
by memory access constraints. In a multiprocessor with highly parallel 
memory access, memory conflicts would occur only when individual units 
of data are simultaneously requested, or are locked for sequential 
conflict resolution. This would be the optimum structure for parallel- 
ism, and the cache memory's role is reduced to a possible enhancement 
of processor execution speed. 

In the parallel-hybrid redundant multiprocessor, on the other 
hand, the memory access is highly serial, for reasons dictated by relia- 
bility and economy. This essentially means that the memory has a 
single port, and that the throughput of the multiprocessor is governed 
by the bandwidth of this memory port. In this case, the cache memory 
has a significant role in enhancing parallelism. The combination of 
processor and cache is a true computer, capable of performing elaborate 
operations on input data in response to terse commands. This means 
that the common memory can contain programs written in a language level 
higher than the processor's machine-language level, and that the 
processor-cache unit can interpret the higher level statements during 
the time that other processor-cache units are accessing the common 
memory. In this mode of system operation, which is really a form of 
"virtual machine," a memory port of moderate bandwidth can support an 
instruction execution "bandwidth" that is, at least in principle, almost 
arbitrarily large. 

The degree to which the instruction execution bandwidth can 
exceed the common memory port bandwidth depends on the parameters of 
the cache memory, the terseness of the higher level language, and the 
relative amount of input and output data for each independent procedure. 
Clearly, the enlargement of the cache memories tends toward a multi- 
computer organization. Indeed, at some point the total cache capacity 
becomes adequate to contain everything in common memory, and the useful- 
ness of common memory is reduced to the buffering of inter-process data. 

It should be noted that the use of cache memory to eliminate 
common memory has a significant side-effect. Earlier in this section it 
was pointed out that in the extreme, the processors in a multiprocessor 
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are anonymous. This characteristic iS significant to our application 
because of the frequent reconfigurations that need to take place in 
this computer for latent fault exposure, which is described further on. 
Anonymity also provides an intrinsic mechanism for dynamic load distri- 
bution among available processing resources. The cache memory acts to 
reduce the anonymity of the processor. To put it another way, the 
degree of anonymity is determined by the ease of reloading the cache 
memory. With zero cache memory, anonymity is greatest. As cache 
memory is increased to support instruction bandwidth enhancement, the 
anonymity of the processor-cache units depends on the amount of cache 
memory whose contents are unique to one processor. Note that the in- 
corporation of identical procedural and other constant data, or indeed 
indentical variable data, in every cache memory has no adverse impact 
on anonymity. 

The use of a cache memory in a sampled-data control application, 
such as the aircraft application considered here, is generally productive. 
The typical job step uses rather few data samples as input, and produces 
one data sample as output. The procedures used tend to lend themselves 
well to expression as macro-operations, i.e. higher level operations, 
such as floating point arithmetic, linear combination, elementary 
functions, vector and matrix operations, and so forth. The incorporation 
of procedures of this level as cache subroutines is reasonable and 
profitable in today's technology. The current high annual rate of 
memory density increase prompts one to observe that a fairly extensive 
set of procedures, and indeed a hierarchy of procedures, are appropriate 
for inclusion in cache memories to be produced several years hence. 

The memory structure of the parallel-hybrid redundant multi- 
processor includes cache memories for data and procedures, partly read- 
write, but mostly read-only, designed to enhance instruction bandwidth 
with rather little loss of processor anonymity. The common memory, 
although highly modular, acts as a single-port paged memory, accessible 
to one processor at a time via a serial bus with a built-in contention 
mechanism. 

2.1.2 Interface Access 

The external interfaces of the multiprocessor could in principle 
be accessed by the memory bus and be addressed in the memory space. 
The nature of input-output traffic, however, is enough different from 
that of memory traffic to justify a separate channel for input-output 
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data. This interface channel is strongly analogous to the single port 
memory, in that different processors access this channel at different 
times . It is a serial bus, also, but contention is resolved by software 
rather than hardware. The bandwidth is lower than that of the memory bus. 

If one were to look for an analogy to the processor's cache 
memory in relation to the input-output data bandwidth, it would be the 
local processors dedicated to sensor and effector components. This 
point was anticipated in the preceding chapter by noting that bandwidth 
and reaction speed requirements are alleviated by local processing. 

2.1.3 Functional Resource Allocation 

The programmer sees this multiprocessor as a machine for execut- 
ing job steps, largely corresponding to periodic sampled-data updates. 
The magnitudes of these job steps will vary considerably from one 
control function to another, but will require something of the order of 
a few milliseconds, on the average, of processor time per job step. 
The procedure for each job step is written in a suitable language, and 
resides in common memory. Typically, each job step is scheduled to 
occur at a given time or following a given event. The relevant dispatch 
data for each scheduled job step is kept in a queue, where it is 
frequently examined to see if the job step is eligible to be run, or 
invoked. The frequent examinations are conducted by processors that have 
completed their earlier assignments, and are available to undertake new 
ones. When an available processor determines the subset of eligible 
job steps, it selects one of them to invoke, where the selection can be 
made by a simple or complex algorithm. In this way, job allocation is 
dynamic, and adjusts itself to the momentary load distribution and to 
module failures. If processors are insufficiently anonymous, this can 
produce an overhead reduction in system throughput. 

Memory management is not a critical issue in this application. 
No special consideration need be given to this area beyond the fact that 
the common memory, like the cache memory, will combine read-only and 
read-write memories. Test and reconfiguration problems are treated 
later on. 

Input-output management in a multiprocessor can be more complex 
than it is in a single multiprogrammed computer, because as a single- 
port resource, it impinges on program parallelism. Depending on the 
statistics of external data traffic and of internal job steps, different 
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access strategies may be appropriate. The most straight-forward of 
these is to treat interface access as a single resource that iS alloca- 
ted to a single process for its exclusive use for the short period of 
time that a process requires access. Access may be granted on a priority 
basis or a first come first served basis. That is, when a processor 
needs interface access, it ascertains by means of flags in memory whether 
the interface is free. If not, the processor waits (with appropriate 
safeguards against lockup) until it becomes ,free. A more complex strat- 
egy is to quasi-dedicate a process to handle and buffer all input-output 
traffic. This is apt to improve the net input-output bandwidth at the 
cost of internal memory bandwidth. It moreover largely reduces the ano- 
ymity of that processor, with a consequent penalty in load sharing and 
recovery speed. The current presumptionis that the former approach, 
using processor contention, will be preferable for this application. 

2.2 Redundant Organization 

The physical organization of the parallel-hybrid redundant multi- 
processor is substantially more complex than the nominal organization 
outlined in the preceding section. A simplified module diagram of the 
computer is shown in Fig. 2.2. Superficially, this diagram appears the 
same as the nominal multiprocessor. The principal differences are that 
the buses for memory and interface access are redundant, and that the 
actual number of modules is three times the number of nominal modules 
plus some number of spares. 

As mentioned in the preceding chapter, all activity is conducted 
by triads of modules and triads of buses. A module triad is formed by 
associating any three like modules with one another. This means that 
any module can serve as a spare for any triad. Such flexibility permits 
the best possible utilization of surviving modules. A single triad of 
bus lines is active at any one time for each of the memory and interface 
accesses. In other words, a three member subset of N bus lines is 
chosen on a quasi-static basis to serve as a bus triad. 

Every module of every kind is able to receive data from all 
incident bus lines, and contains a decision element to formulate a 
corrected version of bus data. It is necessary for each module to know 
which three bus lines are the active ones. These three lines are 
connected to a voter in each module, thus constituting a TMR element. 
The three active bus lines carry three independently-generated versions 
of the data, each version coming from a different member of the triad 
that is transmitting the data. To accomplish this, it is necessary to 
assign each module to transmit on one specific bus line. Now if 
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totally flexible module configuration is to be possible, it follows that 
the assignment of a module's transmission to a single bus line,must be 
quasi-static and reconfigurable. 

2.2.1 Bus Guardians 

In addition to the redundancy described in the preceding few 
paragraphs, the redundant organization differs from the nominal one by 
virtue of the inclusion of.independent submodules called bus guardian 
units in each processor,'memory, and input-output access unit. 
Guardians are charged with governing the status of theirassociated 
modules. This includes power-on status, memory bus triad and transmis- 
sion selection, and certain self-test configuration selections. 

Each of the functions of the guardian has the characteristic 
that its failure modes have safe directions as well as unsafe ones. By 
biasing the failure modes toward the safe directions, it is possible to 
increase the probability of system survival. In general, the safe 
failure modes of a modulearepower-off, and bus transmission disconnected. 
To bias in this direction, one can employ redundant guardians in each 
module, and require agreement among them to establish power-on and bus 
transmission enable. 

The connection of bus guardians is illustrated in Fig. 2.3. It 
should first be noted that the guardian principle depends heavily on 
fault independence. Therefore each guardian derives its power, its bus 
inputs, and its timing reference independently of all other guardians. 
It is moreover physically isolated from all other guardians and all 
modules. A particularly critical area from the isolation viewpoint is 
the control of the module's transmission interface onto the various bus 
lines. The bus isolation gates must be highly independent of one 
another, as must the guardian's enable signals to these gates. This is 
one of the crucial electrical and mechanical design aspects of the 
entire computer. 

Bus guardians are addressable as part of the common memory 
address space, and are capable of receiving messages from any processor 
triad via the active memory bus triad. A message to a guardian contains 
commands which are staticized by the guardian and applied to its outputs 
until superseded by a new command message. In this way, the probability 
is remote that a failed module can assert more than one erroneous data 
stream. As a result, correct data can be determined by the bus voters, 
and the malfunctioning module can be switched to a silent state. It is 
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noted in passing that certain failures of a bus isolation gate can render 
a bus line useless, in which case that active bus triad must be 
reconfigured to use a spare line. However, most guardian failures 
appear as passive failures of the processor, memory, or input-output 
access unit to which the particular guardian unit pertains. 

Guardians are used as agents to convey the computer's configu- 
ration authority to all elements of the computer. They are highly 
secure against the random or willful malfunction of any single active 
transmitting module. They make possible the highly flexible reconfigu- 
ration referred to earlier. 

2.2.2 Processor and Memory Modules - 

It was mentioned before that all modules and buses are organized 
into triads. In the case of processors and memories, there can be 
numerous triads in existence at the same time, but only one memory bus 
triad and only one interface bus triad. Each processor triad acts as 
one functional processor, of which several can work in parallel. Each 
memory triad acts as a page of memory, of which several can exist at 
one time, but only one can communicate at a time with a processor triad. 

When a processor fails, its triad will attempt to complete its 
current job step, which it will be able to do unless a second failure 
prevents it. The period of vulnerability to a second failure will be 
a fraction of a second. When the job step is complete, one of the 
processor triads is assigned the task of reconfiguring the injured 
triad. When the erroneous module is identified, it is removed by 
commands to its guardians. If a spare is available, it is connected to 
the appropriate bus by its guardians, likewise upon command by the 
processor triad assigned to the reconfiguration. Triad identity will 
be assigned to the spare processor by a direct message. If no spares 
are available, the injured triad is retired. The resources of the 
multiprocessor are diminished by one processing unit, and the two 
unfailed members of the former triad are now available to be used as 
spares, should further failures occur. 

The situation is much the same for memory modules. The principal 
difference is that memories are not anonymous. In fact, a read-only 
memory module is totally dedicated to its assigned function, and cannot 
be used as a spare. When a read-only memory triad is injured by the 
loss of a memory module, a read-write memory module can be used as a 
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spare. It must be loaded to agree with the surviving triad members 
before a second failure occurs. If no spare is available, the triad is 
reduced to a dyad, which is vulnerable to the next failure, at which 
time one memory page is lost. This is a significant departure from the 
flexibility offered by the anonymous processor triads. The eventuality 
of read-only memory failure must clearly be covered by the inclusion 
of adequate spares, either read-write memories for flexible pooled use, 
or extra dedicated copies of read-only memory. 

2.2.3 Input-Output Access 

Figure 2.2 indicates the existence of input-output access modules 
connected to the internal interface bus and also'to the external environ- 
ment. In the last section of the preceding chapter, it was pointed out 
that the external interfaces of the computer could alternatively support 
dedicated, bussed, or networked link structures to the sensor and 
effector components. The redundancy structure at this point depends on 
the redundancy desired in the external interface. 

The simplest conceptual structure is for a triple-redundant 
interface, such as a redundant external bus, where the triple modular 
redundancy structure is extended through to the component interfaces.. 
Each external bus line can be dedicated to a different input-output 
access module, which in turn is assigned by its guardian units to 
transmit on one of the active interface bus lines. More complex 
variants are possible, in which each access module performs error cor- 
rection by voting on incoming data from the external bus. 

When an external interface is non-redundant, the strategy would 
be to assign it to a single access module, where the module would 
transmit on all three active interface bus lines. A malfunctioning 
access module could pollute the entire interface bus, but with suitable 
encoding and protocol there would be no serious consequences to the 
state of the system. The offending access module could be discovered 
and disconnected by bus guardian commands conducted over the memory bus, 
the major penalty being a time loss on the remainder of the input-output 
interface of the computer. For dedicated links, the loss of the link 
is non-critical by hypothesis. For a network, whose survival is assumed 
critical, the computer must interface with the network in several places 
via several distinct access modules. Each such interface would be 
simplex, but the system would survive the failure of all but one of them. 
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2.3 Synchronization 

The employment of independent redundancy requires some form of 
synchronization among the independent data sources. Soft, or loose 
synchronization involves such operations as buffering, comparing or 
voting, signalling consensus, and marking completed intervals. These 
can all be done by program, given suitable intermodule data links. 
Hard, or tight synchronization involves hardware comparison or voting, 
and a common time reference, where loose synchronization can employ 
separate time references. 

Tight synchronization is employed in the parallel hybrid redundant 
multiprocessor. It provides the basis for solving some problems and 
presents some problems of its own. A common time reference, or clock, 
that supports hardware voting, allows instantaneous validation of 
internal data, configuration control, and, in some cases, interface 
data. In this way, it helps to make the redundant multiprocessor 
resemble the nominal one, which is advantageous to programmers at 
all levels. 

The problems of common clocking stem primarily from the fact that 
it is critical to computer operation in the dynamic sense. The timing 
reference must be continuous and must remain within tolerances. A 
second consideration is that common clocking results in time-correlated 
data transfer, which is subject to correlated malfunction if subjected 
to external radiation of electromagnetic energy beyond the levels 
tolerated by shielding. The first problem has been largely solved by 
the development of a phase-locked redundant clocking system. The second 
problem is intrinsic to all synchronization, but is more severe for 
tight synchronization. The problem also exists in principle for any 
degree of shielding. When the statistics of such interference are 
known, the problem can be addressed in the time domain by encoding for 
error detection, rerun for recovery, or repetition for time independence. 

The fault-tolerant clock shown in Fig. 2.4 consists of a set of 
independent phase-locked oscillators arranged so that the failure of 
one or more of the oscillators (up to a design limit) does not destroy 
the phase lock of the survivors. The clock signal from each oscillator 
is distributed to every module and guardian, so that each can make an. 
independent determination of clocking edges. These independent 
determinations are made by circuits called clock receivers. In normal, 
nonfailed operation, the outputs of all the clock receivers are in 
phase lock with each other and with all the oscillators. The same phase 
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lock holds when an oscillator fails. The failure of a clock distribution 
line appears as an oscillator failure, and the failure of a clock 
receiver appears as a failure of the module or guardian that contains it. 

The fault-tolerant clocking network is vulnerable to undetected, 
or latent, faults. This issue is further treated in subsequent sections. 

2.4 Fault Detection, Identification, and Recovery 

The central computer is designed to have a highly improbable loss 
of capability. One can roughly quantify this statement by saying that 
one of these computers should exhibit a total failure rate of less than 
1o-g failures per hour in a flight of up to ten hours. This virtually 
rules out the use of ordinary triple modular redundancy, as the MTBF's 
achievable in large scale production have been consistently too low for 
such reliability without replacement of failed modules. Therefore some 
form of hybrid redundancy is needed. In a simplistic view, hybrid 
redundancy works by substituting a spare the first time the TMR voters 
disagree. This view has the shortcoming of not taking latency of faults 
into account. That is, the first fault may not result in any voter 
disagreements, whereas when combined with a second fault, it may 
frustrate recovery. A prerequisite for achieving highly improbable 
failure in a hybrid system is therefore to expose latent faults by 
systematic exercising, or "flexing" of all logic elements. The question 
remains of how often such flexing must occur. Hopkins and Smith [21 

have shown that the flexing period must be of the order of seconds for 
a reasonably sized system with module MTBF's in the ten-thousand hour 
range. Clearly, then, flexing cannot be relegated to pre-flight 
checkout, but must rather be conducted routinely in flight. An 
ordinary hybrid TMR system cannot routinely test itself when performing 
critical functions, as it is vulnerable during these times. A parallel 
hybrid TMR system can dc this, however, and this becomes an integral 
part of the computer's architecture. The remainder of this section is 
devoted to this issue. 

The latency problem poses an interesting design dilemma. 
Redundancy is employed to mask the effects of faults upon the system 
as a whole. But redundancy requires flexing of all logic, and more- 
over requires that all possible faults that are created by flexing be 
made visible to the system, and not masked. The resolution of this 
dilemma requires reconfiguration of all independent system elements 
plus the selective generation of faulty symptoms to verify detection 
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mechanisms. This is why, for example, quadded or interwoven [3] logic 
is not proposed for this application, as it cannot be reconfigured and 
testedonline. The same holds for many of the error-correcting coded 
memory and arithmetic units that have been designed. 

In the parallel-hybrid redundant multiprocessor, an error 
correction mechanism exists in every module in the form of a voter. 
Each voter must be tested routinely to ensure that its error correcting 
capability is undiminished, which will be explained further. Of all 
the voters only those in the processor modules have the additional 
capacity to detect, as well as to correct errors. This is not to save 
equipment. Rather, the processor is the only kind of module in the 
computer that can utilize the information. Processor bus voters under 
normal conditions will correct single bus errors and will set error 
latches to indicate which of the buses was in disagreement. At this 
time the processor can record the identity of the nominal user of the 
bus for diagnostic purposes. A processor triad can flex its own voters 
during a test job step by having each triad member purposely utter 
independent bus data that causes all possible kinds of bus errors. To 
pass the test, all triad members must receive the same data, form the 
same corrected result, and indicate the same disagreement patterns in 
their error latches. This is a relatively simple test procedure, which 
can be conducted by a processor triad under test while other triads 
carry on normal functions. In a sense it qualifies the triad to conduct 
further testing, in which the triad's voters are the decision elements. 

The remainder of the system testing function is carried out under 
the assumption that the processor voters and error latches are 
operational. We have referred to voters as being responsive to "errors" 
on the buses. In our nomenclature, a "failure" is a physical malfunction 
that may cause a "fault," which is a logic variable malfunction. An 
"error" is a manifestation of a fault when the fault affects the out- 
come of a data transfer. The test process involves the conversion of 
every fault into an error, by making calculations whose results are 
sensitive to each logic variable. Each bus and module, including 
voters, guardians, isolation gates, clock receivers, oscillators, and 
data and power interfaces must be exercised in depth. 

No attempt is made here to give an exhaustive description of 
these test algorithms. Some of them indeed remain to be formulated. A 
few brief outlines will serve to explain the important considerations. 
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Processox testing involves fairly conventional self-test 
approaches, except that coverage needs to be higher than that which is 
typically obtained in computers. A guideline, then, for processor 
design is to eliminate obscure and pattern-sensitive sequences as much 
as possible. This would indicate, for example, that a microprogrammable 
bit-sliced structure is to be preferred over a fully integrated, 
"tricky circuit" processor. The cache memory is also tested by a 
conventional program approach. Address faults and pattern sensitivities 
present the most important problems to be solved. 

Memory niodule testing is similar to cache memory testing. The 
memory voters are tested by sending single-error messages to a memory 
triad over the memory bus and verifying correct responses from the 
triad members. 

Input-output access modules are also tested by messages from 
processors. Where voters are used, they are tested in a manner similar 
to memory voters. Simplex access units are tested in conjunction with 
input-output links. 

Guardians are tested by reconfiguration commands, and their 
voters are tested as memory voters are, by erroneous commands. 

The clocking system presents a unique testing problem, both 
because it is nearly separate from the data handling elements, and 
because the testing of clocking circuitry is fundamentally different 
from the testing of other logic circuits, which are testable once a 
valid clock exists. Latencies in the oscillators can occur in the 
phase-locking circuitry. This is probably the most vulnerable area 
for in-flight testing. If the a priori probability of failure in phase 
lock circuits is sufficiently low, it may be possible to perform these 
tests only at preflight time. Clock receiver latencies, however, can 
be tested in one module at a time with minimal system vulnerability. 

We might summarize the fault detection process as the arrival of 
disagreement errors at the voters of a processor triad, stimulated by 
normal or test activity. The detection of a fault initiates the 
process of fault identification, which is the discovery of the module, 
bus, or other isolated element in which the failure resides. During 
the testing process for latent faults, there is relatively little 
ambiguity in the determination of faulty modules. In normal operation, 
however, an error on the bus can come from a number of sources. The 
identification of the faulty module generally requires the "rounding up 
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of suspects," that is, the listing of elements that transmit on the 
disagreeing bus. If a module fault is permanent, the module can be 
found by moving it to another bus. If the bus is faulty, reconfigu- 
ration will not move the error to another bus. 

Intermittent faults are less easy to identify. When the source 
- of an error eludes detection by disappearing, all of the suspect elements 

are assigned one demerit, and a reconfiguration is then made to distri- 
bute the suspects evenly on different buses. Subsequent error occur- 
rences and reconfigurations will cause a preponderance of demerits to 
accumulate in the name of the faulty module. 

The recovery process is one of assignment and initialization for 
modules, and voter and transmitter selection for buses. These are all 
accomplished by the bus guardian units upon receipt of commands from 
active triads executing system software. Recovery can take place even 
if single errors are present on the buses. In principle, therefore, 
an injured processor triad can reconfigure itself. 

The use of program restart, or rollback, as a recovery mechahism 
is secondary, because it is neither veryeffectivenor very easy to 
implement. The first level of system defense is the masking of errors 
by the TMR method. The additional system failure rate reduction 
achievable by rollback can not be measured, a priori, without an under- 
standing of the applications software. It should be anticipated, how- 
ever, that any event that defeats the TMR masking is apt to destroy the 
vehicle's state vector, which may or may not be catastrophic. In any 
event, some degree of program restart capability must be included to 
support power-up initialization and to deal to some extent with the 
eventuality of uncovered errors. This will affect both system software 
and application software. 
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CHAPTER 3 

ASSESSMENT OF THE IMPACT ON 
COMMERCIAL AIRCRAFT 

The next generation of commercial aircraft are expected to make 
extensive use of digital avionics, with this technology largely replac- 
ing most of the existinganalog techniques. The general arguments for 
implementing digital avionics lie in two areas: (1) safety and (2) 
efficiency. Safety improvements are seen through (a) system integrity 
improvements through increased reliability and more effective use of 
redundancy; (b) pilot work load reduction; (c) improved communications 
capability and; (d) improved system performance. Efficiency improve- 
ments are expected due to (a) higher reliability (longer mean time 
between required maintenance actions) and (b) reduced life cycle costs, 
throu,gh simplified logistics support, a complete self check capability 
reducing unnecessary removals, a capacity to defer maintenance, and 
associated efficiency improvements of related subsystems due to the use 
of an integrated information system. 

3.1 Functional Applications 

The need for large scale deployment of fault-tolerant computation 
can be seen as arriving with the next generation of aircraft. Table 3.1 
outlines the growth of flight guidance modes since the 1940's in Douglas 
Aircraft commercial transports, and is typical for the industry. The 
next Douglas transport is projected as having digital flight control 
and digital fly-by-wire control of sensors and actuators. The use of 
digital computation is also expected to extend beyond the flight control, 
navigation, and guidance function into other aircraft systems and into 
other functions. 

Table 3.2 defines four aircraft functional areas: (a) Navigation 
and Guidance, (b) Stability and Control, (c) Air Traffic Control, (d) 
Aircraft Systems Management. These functional areas are ranked by the 
criticality of the function during or for each mission phase. This is 
done for current aircraft, next generation aircraft (1980's) and future 
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TABLE 3.1 
GROWTH OF FLIGHT GUIDANCE MODES IN DOUGLAS COMMERCIAL AIRPLANES 

(TYPICAL ORIGINAL MODEL) 

MODEL DC-4 DC-6 DC-7 DC-8 DC-9 DC-10 DC-FUTURE 
1946 1947 1953 1959 1965 1971 

HEADING HOLD X X X X X X X 
ALTITUDE HOLD X X X X 'X X 
HEADING SELECT X X X X X 

AUTOMATIC- 
TURN COOR. X X X X X 
AUTO PITCH 

TRIM X X X X X 
TURN LIFT 

COMPEN. X X X X X 
VOR X 
Ills ----.-. --,-.--AL- -;a-. _-_ x 
VERTICAL SPEED X X X 
BACK COURSE ILS 

(FLT. DIRECTOR 
J@y X 

~ZNDICATED AIR 
SPEED HOLD X X 

MACH HOLD X X 
ALTITUDE PRESEL. X 
TURBULENCE X 

X 

X 

X 
X 
X 
X 

X 
X 
X 
X 

AUTOTHROTTLE X X X 
THRUST RATING X X 
AUTOMATIC 

LANDING X X 
GO-AROUND X X 
TAKEOFF X X 
CO-MMAND CONTROL 

WHEEL STEERING X X 
INS NAV MODE X X 
FLY-BY-WIRE X 
RELAXED STATIC 

STABILITY X 
GUST LOAD 

----- -.. 

ALLEVIATION X 



TABLE 3.1(Continued) 

MODEL DC-4 DC-6 DC-7 DC-8 DC-9 DC-10 DC-FUTURE 
1946 1947 1953 1959 1965 1371 

MANEWER LOAD 
ALLEVIATION X 

FLUTTER 
SUPPRESSION X -__- -- .._-___-._-- .._._ _ .-.-._-_ --___-.. . . _. _ 

TYPE OF HYD + 
_ . _ . . _ 

VAC TUBES + TRANSISTORS + TRANSISTORS + INTEG VAC 
.^ __ .- _ _ _ -- .._ 

DIGITAL 
AUTOPILOT PNEU TUBES MAG AMPS MAG AMPS SOME ICS CIRCUITS 
ACTUATOR 
ELECTRONICS 

AUTOPILOT HYD ELEC MOTOR ELEC MOTOR ELEC MOTOR ELEC MOTOR HYD VALVE HYDRAULIC 
ACTUATOR FLYING FLYING FLYING HYD AIL HYD RUDDER FULL POWER 
MECH CONTROLS TABS TABS TABS MECH RUDDER MECH ELEV 

+ ELEV + AIL 

SOURCE: Digital Flight Control Systems - Considerations in Implementation and Acceptance, 
Douglas Paper 6342, W-B. Yopp.and S.D. McDonnell, 1975. 



TABLE 3.2 
FUNCTIONAL CRITICALITY ACCORDING 

Fission Phase 
TO MISSION PHASE 

1. TAKEOFF - Duration of phase: 1 minute 

Functional Area 

(1) Navigation and Guidance 

A. Current Aircraft 

Criticality 

a. 
b. 
e *. 
d. 
e. 

A??? N_a_vigativ- _IK-Nav), 
Inertial Nqvigation. System (JflS) 
Autoland (Autothrottle) 
Radar Altimeter 
Autopilot 

Modes: (for example) 

Attitude Hold . . . - - _ 
Heading Hold 

Indicated Aj.r..Spegd Hold. .~. _ _ __~__ 
Mach- Ho_ld- ~~ _ _. 
Constant Vertical Speed 

Gl.ide. Slope_Hold 

0. 

C. 

1980's Aircraft 

a. utal Autopilot with Category IIIb (see to taxi) 0 
b. Hybrid Naviqation 1 

c. 4-D Flight Path,Control_ 1 

d. Heads UP Display..___.. __ ~. -..L_ ~ ~. 0 

1990's Aircraft 

(2) Stability and Control 

A. Current Aircraft 
a. Autopilot: Yaw Damper 

B. 1980's Aircraft 
0 - 

a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3 - - _-- 
b. Cockpit Displays - Electronic Horizontal Situation Indicator (EHSI) 3 
c. Flight Envelope Limiter 3 
d. Ride Improvement System 1 
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,TABI.E 3.2 (continued) 

C. 1990's Aircraft 

a. Full Scale Stability‘Augmentation System (Hard SAS) 4 

b. Gust Load Alleviation 4 
c. Flutter Mode Control 4 
d. Maneuver Load Control 3 

(3) Air Traffic Control 

A. 

B. 

C. 

Current Aircraft . 

a. Weather Radar 

b. Ground Proximity Warning System (GPWS) 

1980's Aircraft 

a. Digital 

1990's Aircraft 

a. Digital Data Link (including Metering and Spacing Function) 1 . . . 
b. Airborne Traffic Situation Display (ATSD) 1 

c. Collision Avoidance System'(CAS) 1 

(4) Aircraft Systems Management 

A. Current Aircraft 

a. 

b. 

C. 
d. 

e. 

f. 

9. 
h. 

i. 

j. 
k * 
1. 

Fuel Control (Tankage) rl 
Fuel Control (Engines) 3 
Engine Inlet Control 1 
Center of Gravity Indicator (Pre-flight) 0 
Weight Monitor (Pre-flight) 0 
Cabin Environment 1 
Air Data System (Tenpcrature; Pressure) 3 
Master Caution System 3 
Fire Warning System 3 
Power Generation and Distribution 3 
Automatic Braking System 3 
Aircraft Integrated Data System (AIDS - Maintenance only) 1 

B. 1980's Aircraft 

C. 1990's Aircraft 

a. Integrated Data Management System 1 
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TABLE 3.2 (continued) 

Mission Phase --- 

2. CLIMB - Duration of phase: lo-30 minutes 

Criticality -- 

Functional Area 

(1) Navigation and Guidance 

A. Current Aircraft 

a. 
b. 
C. 
d. 

e. 

Area Navigation (R-Nav) 
Inertial Navigation System (INS) 
Autoland (Autothrottle) 
Radar Altimeter 

Autopilots 

Modes: (for example) 

Attitude Hold 
Heading Hold 
Indicated Air Speed Hold _.. "----. 
Mach- -Hold 
Constant Vertical Speed 
Glide Slope Hold _..-___ _ ~--~ _ 

B. 1980's Aircraft 
a. Digital Autopilot with Category IIIb (see to taxi) 2 

b. Hybrid Navigation 2 

c. 4-D Flight Path Control 2 ~_..-__-.._-- - - 
d. Heads Up Display 0 

C. 1990's Aircraft 

(2) Stability and Control 

A. Current Aircraft 
a. Autopilot: Yaw Damper _ .- - 

B. 1980's Aircraft 

2 

a. Cockpit Displays - E1ectroni.c Attitude Direction Indicator(EAD1) 3 
b. Cockpit Displays .I__ - Electronic Horizontal Situation Indicator (EHSI)3 .__-._I-..-_-_ 
c. Flight Envelope-Limiter .---. . -.. 3 
d. Ride Improvement System 1 i_ ~.- -.--. 
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TABLE 3.2 (continued) 

C. 1990's Aircraft 

a. Full Scale Stability'Augm&itation System (Hard SAS) 4 
b. Gust Load Alleviation. 4 
c. Flutter Mode Control 4 
d. Maneuver Load Control 3 

(3) Air Traffic Control 

A. 

8. 

C. 

Current Aircraft 

a. Weather Radar 1 

b. Ground Proximity Warning System (GPWS) 0 

1980's Aircraft 

a. Digital Weather'Radar Processing 2 

1990's Aircraft 

a. Digital Data Link (including Metering and Spacing Function) 3 . . . , . 
b. Airborne Traffic Situation‘Display‘(ATSD) 3 

c. Collision Avoidance System'(CAS) ? 

(4) Aircraft Systems Management 

A. Current Aircraft 

a. Fuel Control (Tankage) 3 
b. Fuel Control .(Enginesj 3 
C. Engine Inlet Control _ 3 
d. Center of Gravity Indicator (Pre-flight) 0 _ 
e. Weight Monitor (Pre-flight) 0 
f. Cabin Environment 3 
9. Air DataSystem (Temperature, Pressure) .3 
h. Master Caution System 3 
i. Fire Warning System 3. 

3. Power Generation and Distribution 3 
k. Automatic Braking-System 0 
1. Aircraft Integrated Data System (AIDS - Maintenance only) 1 

B. 1980's Aircraft 

C. 1990's Aircraft 

a. Integrated Data Management System 3 
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TABLE 3.2 (continued) 

Mission 'Phase 

3. CRUISE 
Duration of phase: 0.5 hours - 8 hours 

Criticality 

Functional Area 

('I) Navigation and Guidance 

A. 

B. 

C. 

Current Aircraft 
a. Area Navigation (R-Nav) 
b. Inertial Navigation Systim(INS) 
c. Autoland (Autothrottle) _~~~- -. 
d. Radar Altimeter ._ 
e. Autopilot 

Modes: (for example) 

- 
Attitude Hold ~~~~ __. _ 
Heading Hold ._.._. 
Indicated Ai.r Speed Hold -_ 
Mach Hold 
Constant Vertical.Spe& 

Glide Slope..Hold 

1980's Aircraft 

a. Digital Autopilot with Category IIIb (see to taxi) 2 - _---. 
b. Hybrid Navigation- 2 __--~ 
c. 4-D Flight Path,Control 2 

d. Heads Up Display ~ 0 

1990's Aircraft 

(2) Stability and Control 

A. 

B. 

Current Aircraft 
a. Autopilot: Yaw Damper 2 
1980's Aircraft 
a. Cockpit DisplEys- Electronic Attitude Direction Indicator(EAD1) 3 -- 
b. Cockpit Displays - Electronic Horizontal 'Situation Indicator (EHSI) 3 
c. Flight Envelope Limiter 3 
d. Ride Improvement System 1 

41 



TABLE 3.2 (continued) 

C. 1990's Aircraft 

a. Full Scale Stability‘Augmentation System (Hard SAS) 4 

b. Gust Load Alleviation 4 
c. Flutter Mode Control 4 
d. Maneuver Load Control -3 

Air Traffic Control 

Current Aircraft 

a. Weather Radar 

b. Ground Proximity Warning System (GPWS) 

1980's Aircraft 

a. Digital Weather'Radar Processing 2 

1990's Aircraft 

a. Digital Data Link (including Metering and Spacing Function) 3 

b. Airborne Traffic Situation 'Display (ATSD) 3 

c. Collision Avoidance System (CAS) 3 

(4) Aircraft Systems Management 

2 
0 

A. Current Aircraft 

a. 

b. 

C. 

d. 

e. 

f. 

9. 
h. 

1. 

j. 

k. 
1. 

Fuel Control (Tankage) 3 
Fuel Control (Engines) . . 3 
Engine In1 et Control 3 
Center of Gravity Indicator (Pre-flight) 0 
Weight Monitor (Pre-flight) 0 
Cabin Environment 3 
Air Data System (Temperature, Pressure) 3 
Master Caution System 3 
Fire Warning System 3 
Power Generation and Distribution 3 
Automatic Braking System 0 
Aircraft Integrated Data System (AIDS - Maintenance only) 1 

B. 1980's Aircraft 

C. 1990's Aircraft 

a. Integrated Data Management System 3 
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TABLE .2 (continued) 

Mission Phase 

4. DESCENT 
Duration of phase: lo-30 minutes 

Criticality 

Functional Area 

(1) Navigation and Guidance 

A. Current Aircraft 
a. 
b. 

C. 

d. 
e. 

Area Navigation .(R-Nav) 
Inertial Navigation System'(INS) 
Autoland (Autothrottle) 
Radar Altimeter __ _ 

Autopilot.. ~~ ~. -. 
Modes: (for example) 

2 

7 

2. 
2 
2 

_ .-. -- --- . 
Attitude Hold- ~~_ ~._ 
Heading Hdid 
Indicated Air Speed Hold 
Mach Hold 
Constant Jiertiral Speed 
Gl.i,de Slope Hold ~. 

B. 1980's Aircraft 
a. Digital Autopilots with Category IIIb (see to taxi) 
b. Hybrid Navigation 
c. 4-D Flight Path Cuntrol 
d. Heads Up Display -..._-. .- 

C. 1990's Aircraft 

(2) Stability and Control 

A. Current Aircraft 
a. Autopilot: Yaw Damper 2 

B. 1980's Aircraft 
a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3 
b. Cockpit Displays - Electronic Horizontal 'Situation Indicator (EHSI) 3 
c. Flight Envelope Limiter 3 
d. Ride Improvement System 1 
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TABLE 3.2 (continued) 

(4) 

C. 1990's Aircraft 

a. Full Scale Stability,Augm&itatiok System (Hard SAS) ~~ ._ 4 
b. Gust Load Alleviation 4 _-.. ..- 
c. Flutter Mode Control 4 
d. Maneuver Load Control J... 

Air Traffic Control 

Current Aircraft 

a. Weather Radar 

b. Ground Proximity Warning System (GPWS) 
1980's Aircraft 

2 
2 

a. Digital Weather Radar Processiny 

1990's Aircraft 

2 

a. Digital Data Link (including Metering and Spacing Function) 3 .___......... 
3 

c. Collision Avoidance System.(CAS) b . 
.3 

Aircraft Systems Management 

A. Current Aircraft 

a. Fuel Control (Tankage) 

b. Fuel Control (Engines) 

C. 

d. 

e. 

f. 

9. 
h. 

i. 

j. 
k. 

1. 

3 

3 
Engine Inlet Control 3 
Center 0 .~ 
Weight Monitor (Pre-flight) 0 
Cabin Environment 3 
Air Data‘System (Temperature, Pressure) 3 
Master Caution System 3 
Fire Warning System 3 
Power Generation and Distribution 3 
Automatic Braking System. _ 2 _ 

Aircraft Integrated Data System (AIDS - Maintenance only) 
-. .-. ~ - .- - 

1 

8. 1980's Aircraft 

C. 1990's Aircraft 

a. Integrated Data Management System 3 
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TABLE 3.2. (continued) 

Mission Phase 

5. APPROACH AND LANDING 
Duration of phase: 2 minutes 

Functional Area 

(1) Navigation and Guidance 

A. Current Aircraft 

Criticality 

a. 
b. 
C. 

d. 
e. 

Area Navigation &Nav) - ~ .~__.~ 
Inertial Navigation System (INS) 
Autoland (Autothrottle) ~~ _ 
Radar Altimeter. 

Autc!Pilot~_.~_ _.. __-...._ 
Modes: (for example) 

Attitude Hold 
Heading,Hpld - 
Jndicated.Air_Speed Hold .~ _. 
Mach--Hold 
Constant Vertical Speed 

-. --- Glide Slope Hold - 

B. 1980's Aircraft 

a. Digital Autopilot with Cateqory IIIb (see to taxi) 4 
b. Hybrid Navigation 1 
c. 4-D Flight Path Control -Lo-- 4 
d - Heads UP_ Oise!_ lay- ~ 4 

C. 1990's Aircraft 

(2) Stability and Control 

A. Current Aircraft 
a. Autopilot: Yaw Damper 

B. 1980's Aircraft 
l- 

a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3 -. - 
b. Cockpit Displays - Electronic Horizontal Situation Indicator (EHSI)? 
c. Fliqht Envelope Limiter 3 
d. Ride Improvement System - 1 
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TABLE 3.2(continued) 

(3) 

(4) 

C. 1990's Aircraft 

a. Full Scale Stability Augmentation System (Hard SAS) 4 
b. Gust Load Alleviation 4 
c. Flutter Mode Control 4 
d. Maneuver Load Control ? 

Air Traffic Control 

Current Aircraft 

a. Weather Radar 1 

b. Ground Proximity Warning System (GPWS) 3 
1980's Aircraft 

a. Digital Weather Radar Processing 

1990's Aircraft 

1 

a. Digital Data Link (including Metering and Spacing Function) 3 

b. Airborne Traffic Situation Display (ATSD) 2 
c. Collision Avoidance System @AS) 3 

Aircraft Systems Management 

A. Current Aircraft 

a. Fuel Control (Tankage) 1 
b. Fuel Control (Engines) 3 

C. Engine Inlet Control 1 
d. Center of Gravity Indicator (Pre-flight) 0 
e. Weight Monitor (Pre-flight) 0 
f. Cabin Environment 1 

9. Air Data System (Temperature, Pressure) 3_ 

h. Master Caution System 3 
i. Fire Warning System 3 

5. Power Generation and Distributi6n 3 
k. Automatic Braking System. 3 
1. Aircraft Integrated Data System (AIDS - Maintenance only) 1 

8. 1980's Aircraft 

C. 1990's Aircraft 

a. Integrated Data Management System 1 
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aircraft (1990'S). Once introduced, a function is expected to continue 
into later aircraft designs. 

The definitions of criticality are as follows: 

0. Off (function either unused or unimplemented). 

1. Non-essential. 

2. Results in reduced operative performance and 
increased pilot workload. 

3. Will become potential safety hazard if 
unattended. 

4. Crucial: instantaneous safety hazard. 

Table 3.2 is essentially a complementary addendum to the Table 2 
of "Design of a Fault-Tolerant Airborne Digital Computer," Vol. II by 
Ratner et al. [4]. Whereas Ratner defined the concept of criticality 
of classes, Table3.2 attempts to expand by more closely defining the 
impact of function failure on the pilot and by adding the dimension of 
time or flight phase to the criticality of a function. 

Not all functions are active during all phases of a flight and 
are not equally critical during all phases of the flight. Since all 
functions are not performed simultaneously, the processing requirements 
of the computer are computed by summing the various processing require- 
ments within the individual mission phases and selecting the mission 
phase with the highest requirement. This should be done for the full 
system and should also be done when dropping the less critical tasks. 
The resulting figures would indicate the total processing power required 
for the system to perform all tasks, and to what extent failures can 
impact this basic performance before critical tasks are affected. 
Memory requirements for the various applications should be considered 
differently, as all programs for all phases must be carried at all times 
even when the programs are not being executed. When failures occur 
which reduce memory capacity, noncritical programs and data can be 
deleted. Once a program is deleted, however,it can not be recovered 
during a later flight phase. 

Of the more likely functions expected on the next generation of 
aircraft, the autoland function tends to dominate many of the require- 
ments. Autoland tasks are the most critical, as there is virtually 
no time to recover from system failures. Additionally the computational 
loads involved are at a peak. Autoland program memory requirements are 
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also large. Some relief is available from the shortness of the autoland 
phase, which greatly reduces the system exposure to autoland failure. 
It is in fact this very brief exposure period which allows certification 
of the existing triplex and deal-dual analog autoland functions. Hard 
stability augmentation, gust load alleviation and flutter suppression, 
if and when implemented , will place considerably increased reliability 
constraints on the computer because of the almost continual exposure to 
critical function loss. Interestingly enough, most of these prolonged 
exposure functions, while considerably boosting reliability requirements, 
make little impact on performance requirements. This is because they 
occur in non-autoland phases of flight, where calculations are not SO 

complex as the autoland calculations. A notable exception is flutter 
supression. 

The integrated system will be partitioned into a highly reliable 
central multiprocessor(s) and local processing elements. Local proces- 
sors are located at and service aircraft subsystems. They format the 
data required by the integrated system as a whole and communicate it 
back to the central multiprocessor. They also take direction or 
commands from the central multiprocessor. Required computations are 
partitioned between these local elements and the central site. At one 
extreme the local processor is used as a simple data formatter with all 
computation being done locally. At the other extreme most of the 
computation is done locally with the central site merely serving as a 
message switching site to allow the exchange of data among the various 
subsystems. Either extreme is awkward, and the actual partitioning will 
be somewhere between the extremes. Factors which will affect this 
partitioning are (a) criticality of the computation: since the central 
site is ultra-reliable an ultra-critical task is likely to be done 
there; less critical tasks can be done locally. (b) Globalness of the 
task: computation which uses data available only globally, that is from 
many subsystems, tends to be centrally sited; computation which uses 
inputs and controls outputs all of which are locally available are good 
candidates for local processing. Engine control is a good example of 
this; failure of a single engine controller is not critical and most of 
the control can be done locally with only occasional changes in thrust 
set points from the central site being required. (c) Bandwidth 
reduction: if preprocessing of sensor data locally reduces the amount 
of information being shipped to the central site, then the overall I/O 
system can be built with a lower bandwidth. (d) Political/Engineering 
considerations: certain control functions are likely to be partitioned 
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according to manufacturer. Thus the engine manufacturer will provide an 
engine controller, the radar manufacturer a signal processor, and the 
displays manufacturer a display processor. This will almost certainlv 
continue to be the case until the reliability of a central multiproces- 
sor and its I/O system can be demonstrated. Even then, the partitioning 
makes a great deal of sense in many cases, as it allows for the 
autonomous operation of subsystems. This may possibly be unimportant 
in the context of an integrated system, but will certainly be beneficial 
for the manufacturing, repair or testing of the subsystems away from 
the aircraft. Partitioning at this time remains fairly undefined pend- 
ing the exact definition of the aircraft/function implemented. 
Certain isolated cases such as engine control or display processing will 
almost certainly be local while others such as air data computation 
will be central, but partitioning of the remaining functions will await 
greater detail of the specifics of a particular situation. 

A major concern in advanced commercial aircraft design is fuel 
conservation. A study by Lockheed summarized in Figures3.1 and3.2 showed 
that active control technology applied to an L-1011 type aircraft could 
result in 4.4 per cent savings in fuel. To achieve this, maneuver load 
control is utilized allowing a lighter main wing, and stability 
augmentation is used, allowing reduction of the size of the tail surfaces. 
The aircraft is statically stable in most areas of the flight envelope, 
although stability margins are reduced. 

For a single function such as maneuver load control, a triplex 
or quadruplex ([Fail-op12) computer may turn out to be sufficient. The 
suitability of such a simple approach is aided by two factors. First, 
exposure to computer failures is very small. Maneuver load control is 
only critical during high-g maneuvers. While it is true that a trans- 
port must be certified for high-g maneuvers, the risk due to such 
maneuvers is computed as the product of the likelihood of having to make 
such a move and the likelihood of the computer failing to perform 
adequately during the maneuver. Much of the maneuver load control is 
designed to increase the fatigue life of a weaker wing. Since a single 
failure can have only a small impact on fatigue life, maneuver load 
control is not generally critical. Secondly, a single system such as 
this is small, and it is almost always more economic to solve a small 
problem in the particular than to develop a more global solution. 

The building of multiple, simple dedicated boxes for each such 
function is not likely to produce a system which is simple and economic. 
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SPANWISE 
WING 
LOADING 

SHEAR 

BENDING 
MOMENT 

Fig. 3.1 Potential Impact on Design. 
(Courtesy of Lockheed California Company) 
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FUEL SAVINGS, % 
L-101 1 (DUE WEIGHT AND DRAG) 

. REDUCE HORIZONTAL TAIL SIZE BY 350 FT2 2-l/2 

. REDUCE VERTICAL TAIL SIZE BY 220 FT2 ’ l-112 

. ADD 19,000 LB TAKEOFF WEIGHT WITH NO - 
STRUCTURAL CHANGE TO WING 

1 TOTAL 4% 

NOTE: 

MAJOR DEVELOPMENT COST TO MODIFY EXISTING AIRCRAFT; REQUIRES INCREASED 
STABILIZER TRAVEL, ALL MOVING VERTICAL, AND RELOCATION OF LANDING GEAR 

Fig. 3.2 Potential Impact on Design. 
(Courtesy of Lockheed California Company) 
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Indeed the opposite is true. A properly designed integrated system 
offers the potential for considerable efficiency improvements over a 
multitude of dedicated solutions. Reliability constraints tend to be 
greater for the integrated system,though. Where previously many 
failures could be projected to occur at non-critical moments for the 
affected subsystems, an integrated system isbyits nature much more 
exposed to failures. A single failure within an integrated system is 
likely to affect many subsystems. Where the failure of one might not 
be critical, the failure of several together can have a aggregate 
affect which is oritical. Additionally, the aircraft is sensitive to 
failure in the integrated system whenever it is critically sensitive 
to the failure of at least one of its subsystems. Because the reliabil- 
ity constraints for such an integrated system are very high and because 
such systems will be fairly complex, there is currently a tendency by 
industry to back away from fully integrated systems. Highly critical 
functions are unloaded from the integrated system and placed in 
dedicated small independent subsystems. This is a viable approach as 
long as many of the benefits of an integrated system can be achieved 
and the reliability requirement of the integrated can be kept moderate 
by unloading onto only a small number of independent subsystems. Many 
of the advanced design concepts for flight control will not allow 
spin off of the critical calculations from the integrated systems. It 
should be expected, therefore, that initial use of the fault-tolerant 
multiprocessor will be in reduced criticality situations. As the 
pressure to use more advanced flight control builds, and when the inte- 
grated system has demonstrated the required reliability it will be used 
in increasingly critical applications. 

3.2 Maintenance Considerations 

On-board computing capability has a direct effect on maintenance 
costs of commercial aircraft. The ability to perform in-flight monitor- 
ing with assured detection and isolation of errors to the line replace- 
able unit (LRU) of the multiprocessor should eliminate unnecessary 
removals. Additionally, the ability of the multiprocessor to monitor 
the performance of, and test attached equipment should greatly reduce 
unnecessary removals of those units and cut the diagnostic cost of 
.locating faults. Industry estimates are that 50% of all electronic 
LRU removals are unnecessary, at an estimated cost to the airlines of 
about $100 million per year. 
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In addition to aiding the maintenance precedure, the fault-toler- 
ant nature of the computer allows spare modules to be included as part 
of the system. This enables maintenance to be deferred until a mainten- 
ance center is reached. If sufficient spares are carried on board it 
will be unnecessary to stock spares at field depots, and maintenance 
can be concentrated at a main center. Resulting savings in logistics 
of scheduling and numbers of stocked spares should be considerable. 

Certain recommendations can be made regarding the fault-tolerant 
multiprocessor. 

a. Sufficient spare capacity should be carried to assure 
that maintenance can be postponed for at least 50 hours 
for at least 99 per cent of the maintenance events. 

b. Maintenance of the computer should be centralized, 
possibly becoming the responsibility of the manufacturer. 

Wherever maintenance can be postponed by 50 hours, it is assured that 
the aircraft will pass through the main maintenance base of an airline 
before a maintenance action is required. This allows a single site for 
the airline to be chosen as the airline maintenance and spare stockage 
site. Since most maintenance can be done centrally, and because quality 
control can be held tighter for a single site than for many, it will be 
advantageous to centralize maintenance. A logicalextremeof this might 
be for the manufacturer to maintain service centers that maintain these 
computers for several airlines. 

3.3 Operational Considerations 

An integrated highly reliable aircraft information processing 
system may impact airline operations in several areas. The overall 
system should have increased reliability when compared to todays 
systems, offering improved dispatch reliability. Improved maintenance 
and deferred maintenance will also eliminate many delays. A dependable 
autoland capability will reduce weather delays. Data logging and 
equipment history recording, using the excess or spare compuational 
capacity of the system, will improve overall aircraft maintenance, and 
may eliminate the need for the flight engineer. More reliable avionics 
will mean more extensive use of automatic flight modes eliminating the 
potential for many pilot errors. Autoland, for example, is expected to 
be several orders of magnitude more reliable than manual landing in 
clear weather. Automated checklist and automatic contingency programming 
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further reduce the possibility of crew error. Optimal flight profiles 
with optimal engine control can be performed using data and control 
available in the integrated system. While many of these tasks are not 
critical, the acceptability of automated solutions to these tasks is 
hinged upon the economy and continuous availability of the computer 
system. 

3.4 Industry Visits 

To insure a realistic assessment of the C.S. Draper Laboratory 
concept for a fault-tolerant multiprocessor, staff members of the MIT 
Flight Transportation Laboratory and the C.S. Draper Laboratory under- 
took a series of visits to selected airlines, airframe manufacturers, 
and avionic equipment manufacturers. 

Airlines visited were Eastern Air Lines and Pan American World 
Airways. Airframe manufacturers visited were Lockheed Aircraft Corpora- 
tion (Lockheed-California Co., Burbank, California) and McDonnell 
Douglas Corporation (Douglas Aircraft Co., Long Beach, California). 
Avionics manufacturers included Bendix Corporation (Flight Systems Div., 
Teterboro, N.J.), Rockwell International Corporation (Collins Radio 
Group, Avionics Div., Cedar Rapids, Iowa) and Sperry Rand Corporation 
(Sperry Flight Systems, Phoenix, Arizona). 

At the airlines the specific groups visited were responsible for 
avionics selection and operational maintenance. As might be expected, 
Pan American with world-wide routes and maintenance, differed substan- 
tially from Eastern, with its tight short haul structure, as to 
operation and maintenance philosophy. Pan American indicated a strong 
desire to bring as much of their maintenance operations as possible 
back to their main base in New York. In general, maintenance that is 
deferrable for 50 hours can be done in New York. Maintenance which can 
be deferred for 300 hours would be done at regularly scheduled main- 
tenance periods. Eastern, in contrast, showed little interest in 
deferring avionics maintenance for long periods of time. Much of the 
complex avionics, such as inertial units, are not maintained by Pan 
American, but by the manufacturer. This is in line with this report's 
recommendation as to the best maintenance procedure for the fault- 
tolerant multiprocessor. Eastern, instead, does all of its own 
maintenance. Eastern's self reliance mi.ght result from a lack of many 
of the complex subsystems found on Pan Am jets. Eastern planes do not 
have inertial navigation systems, for example. The tendency is probably 
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toward manufacturer's responsibility for maintenance, particularly for 
systems requiring expensive test equipment and highly skilled technicians. 
Once the investment is made for such a facility it is likely that it 
could handle the entire fleet of a particular type of aircraft. A 
single airline may not find it economical to service such equipment 
alone. A possible alternative is for several airlines to form cooperatives 
to service equipment, or for one airline to make the investment and 
service smaller airlines for a fee. Ample examples exist in Europe of 
cooperatives for pooled aircraft maintenance, and of airlines performing 
services for one another for fee in this country. 

Beyond maintenance neither Eastern nor Pan Am felt a great need 
for additional functions. Both expressed a desire for more reliable 
operation with existing functions. This reflects a general feeling that 
for a function to be widely accepted and used, it must be very nearly 
continuously available. Thus a good argument can be made for fault 
tolerance, even for relatively non-critical tasks. 

Both of the airframe manufacturers visited indicated that the 
next generation or the next derivative aircraft would use digital 
avionics. Some advantages are expected from reduced static stability 
and maneuver load control, although such steps toward a control- 
configured vehicle willbe small and cautious. The flight control system 
will be critical only during autoland and during high speed cruise where 
the yaw damper may be vital. Fall-back control systems will allow 
manual control under most conditions of the aircraft even if the flight 
control system fails. Some concern was expressed that if the computer 
did become as vital as some of the more advanced concepts suggested, 
that at least two computer sites would be required so that physical 
damage to one of the sites would not result in the loss of the aircraft. 
The manufacturers foresaw no problems with FAA certification of functions 
based upon digital technology, although they noted that software 
modularity could ease the certification problem. 

The visits to avionic equipment manufacturers reinforced the 
belief that the next generation cf aircraft would have a higher comple- 
ment of digital computation, but they did not foresee a great deal of 
integration of functions. Avionic manufacturers expressed some concern I 
that non-dispatch-critical functions would be integrated into a central 
computer, even though the concept of the fault-tolerant computer allows 
for failures of these functions. They also felt that certain functions 
would continue to be performed in analog, rather than digital, fashion, 
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particularly the yaw damper. Avionics manufacturers agreed that power 
supply failures and transients, as well as connectors, caused the 
greatest amount of problems for avionics equipment on current generation 
of aircraft. Again, FAA certification of new digital functions was not 
foreseen as a problem and could be accomplished through simulation. 

3.5 Summary 

.The greatest advantage of a fault-tolerant multiprocessor lies in 
the area of safety: the slow degradation of computing capability while 
maintaining high*reliability for flight critical functions. To insure 
the survivability of the system in case of non-catastrophic physical 
damage to the aircraft, the central computer must not be confined to a 
single physical location. 

Some additional problems (which are not unique to fault-tolerant 
multiprocessors) that must be considered in the implementation of the 
system are power supplies (both transients and failures) and connectors. 
The above two areas cause the great majority of failures (or reported 
failures) in current avionics equipment. Sensor and actuator relia- 
bility will also become more critical in the next generation aircraft. 
Finally, the central computer must be resistant to failures induced by 
lightning strikes on the aircraft. 

In the software area, it is not anticipated that FAA certification 
of software for the fault tolerant multiprocessor will be significantly 
more difficult than any other software certification for avionics 
equipment. Modularity of software, to the degree possible, will 
probably ease the process. The computer language does not have to be 
decided on the basis of higher order language or machine language: 
rather the most appropriate mix from a programming point of view should 
be used. Certification will not be more complicated in any case. 

In summary, no major objections or constraints to the use of a 
fault-tolerant multiprocessor in airline operations exist, while the 
concept does offer several significant advantages. 
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CHAPTER 4 

MALFUNCTION TOLERANCE 

The usually high level of dependability required in the central 
computer makes it mandatory to consider all possible sources and effects 
of probable malfunctions. The probabilities associated with exposure 
to hazards are important here, as they are in any reliability analysis. 
The fact that reconfiguration and recoveryare needed to meet reliability 
goals .raises other issues of importance, having to do with the proba- 
bilities associated with the detection and identification of malfunctions, 
reconfiguration and recovery of the system, and the system status 
following a malfunction event. All these considerations relate both to 
the design and the evaluation of the system. 

To give some structure to this subject we first define the mal- 

function sources. Certain of these malfunction sources, external to the 
system, are able to be dealt with by isolation of the computer in the 
form of malfunction prevention. Where prevention measures are inadequate, 
malfunction sources must be dealt with by tolerance, commonly called 
fault tolerance. Both prevention and tolerance pose architectural 
constaints as well as design requirements extending to the total air- 
craft system. The purpose of this chapter is to introduce the reader 
to the nature of malfunction sources and the ways in which they impact 
the system architecture and design. 

4.1 Malfunction Sources 

A malfunction is a general term for anominal behavior. Numerous 
kinds of malfunctions are distinguished, ranging from microscopic dis- 
orders in an integrated circuit to total aircraft impairment. Within 
the information processing segment of the total system, we are concerned 
about avoiding malfunctions that preclude the availability of viable 
contingencies. We can think of potential malfunctions as being infinite- 
ly rich in number and variety, and tractable solely because they can be 
treated as classes and subclasses. 
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The first class of malfunctions to be examined is that resulting 
from externally induced phenomena, such as physical penetration, 
radiation (atomic, electromagnetic), temperature extremes, or excursion 
of prime power. The common thread in these diverse physical environments 
is that their effects can not be confined or localized to one or a few 
sub-portions of the information system. The entire system is vulnerable 
at one time, and for an arbitrarily high exposure it can not be made 
otherwise. That is, the shielding, structure, environmental control, 
and prime power generation must all be designed to withstand stated 
levels of exposure to known hazards. Exposures in excess of these levels 
are potentially catastrophic. 

Induced malfunctions can not be dealt with in absolute terms by 
internal redundancy, because of their high correlation across separate 
elements of the system. Nevertheless, not all overexposures will 
defeat a redundant system, and the recovery possibilities of the 
redundancies should not be ignored. Other than this, the induced 
malfunction problem is treated as a somewhat separate, external issue 
from the system architecture. One exception to this last statement is 
in the input-output linkages from the central computer to local 
computers, and thence to the sensor and effector subsystems. The 
potential exposures in these linkages to radiation and damage are parti- 
cularly high, and warrant careful consideration of linkage technology 
and topology. 

The second malfunction class is of malfunctions whose sources 
are internal to the system. It is customary to subdivide this class 
into two subclasses corresponding to random and systematic occurrences. 
Actually, however, it is more nearly true that a continuum exists be- 
tween the two extremes, which needs to be characterized by simple and 
joint probability distributions. For our present purposes of general 
description, it is reasonably accurate to use the concept of a 
correlation coefficient together with the assumption of random mal- 
function events with a constant hazard rate. For independent malfunctions 
within a single element protected by other, redundant, elements, the 
correlation is taken to be zero. For malfunctions affecting two or 
more redundant elements identically, such as design errors, or pattern- 
sensitive anomalies, the correlation is taken to be one. In this case, 
the redundant group behaves exactly as a simplex element. In the case 
of internal systematic problems, such as crosstalk or generic hardware 
weakness, the correlation is intermediate between zero and one. As a 
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general rule, the redundant system failure rate is linearly sensitive 
to correlation parameters, whereas it is sensitive to some power, 
typically the second, of the hazard rates. 

The third class of malfunction sources will simply be denoted as 
"other sources." The first two classes are broadly enough defined to 
be stretched to cover everything, but it is useful to emphasize certain 
sources separately. Thus we include in this third category the 
deficiencies resulting from lapses in system specification, that is, 
where the domain of operation and the domain of design are not matched. 
Software in this sense is a specification. It specifies the sequential 
rules of hardware utilization. Logic design is also a specification in 
this sense, as are design factors related to the human interfaces and 
the sensor and effector interfaces. 

The architectural implications of this category are that the 
system must be tractable and understandable enough to reduce the 
probability of occurrence of such malfunctions to a negligible level. 

4.2 Malfunction Consequences - 

It has been useful to characterize the various possible mal- 
functions according to the levels at which they affect the system. 
There are physical malfunctions that occur within hardware elements, 
such as a short circuit in a transistor. These have been referred to by 
various writers as faults and failures, and in this report the word 
failure has been intended to refer to this category. A physical mal- 
function may or may not result in a logic mal-function, in which a logic 
variable is at some time or another complementary to its correct value. 
Where authors use the word'faultl' for physical malfunction, they use 
'Iailure"for logic malfunction, and vice versa. A logic malfunction can 
occur in the absence of a physical malfunction, notably from induced 
sources. 

A logic malfunction may or may not produce a data malfunction, --~ 
often called an error. A data malfunction can occur in the absence of 
a logic malfunction, notably from specification lapses. A data mal- 
function, in turn, may or may not produce a subsystem malfunction, which 
in turn may or may not produce system malfunction. 

We have portrayed a propagation chain from physical malfunctions 
to system malfunction, with some external entry points. Whether propa- 
gation takes place from one level to another depends on whether a 
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causal link exists in the first place, and whether the phenomenon is 
masked by a redundancy. Thus a logic malfunction produces a data mal- 
function only if it impacts the outcome of an operation. Even then, 
it may not, as for example when the data results from the voting of 
three inputs, only one of which suffers a data malfunction. 

A key point, often overlooked in simplistic treatments of 
redundancy, is that redundancy always has a limited capacity to mask 
malfunctions, and this capacity can degrade to zero without affecting 
the apparent behavior of the system. Therefore, a system designed to 
have tolerance may in fact have none at the inceptionofa critical mis- 
sion. Alternatively it may have some tolerance, but less than the 
design level, and less than what is assumed. The preceding chapter 
made this point in the discussion of detection, identification and 
recovery. The system reliability impact of this issue is treated in 
the next section. It is worth reiterating here that masking is a two- 
edged sword. On one hand it is a mechanism for holding malfunctions at 
a low system level, while on the other hand it may obscure the fact 
that the malfunction has occurred and thereby has reduced the system's 
tolerance to future malfunctions. 

4.3 Tolerance Renewal 

The primary advantage of hybrid redundancy over TMR is that 
injured triads are reconfigured back to a state where they can once 
again mask malfunctions. This is a process of tolerance renewal. In 
principle, the system failure rate is restored it its design value by 
the reconfiguration process. If reconfiguration were to fail, the 
system failure rate would increase, possibly by many orders of magnitude. 

In practice, there are several ways in which an injured triad 
can fail to be reconfigured. These include exhaustion of spare modules, 
malfunction of the reconfiguration mechanism, failure to detect the need 
to reconfigure, and perhaps the use of a defective spare module. We can 
characterize the process of tolerance renewal as the detection and 
location of any physical malfunction, the removal of vulnerability from 
the triad containing the malfunction, the replacement, by spares, of 
functions thus removed, and the initialization of the reconstituted triad. 
All mechanisms involved in this process are subject to malfunction, of 
course, and such malfunctions constitute injury to their triads, and 
require that tolerance renewal be carried out. 
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The idealized renewal of tolerance, together with a sufficient 
complement of spares, has an interesting theoretical consequence if 
the hazard rate is constant. Figure 4.1 illustrates this concept. The 
system failure probability increases monotonically with time in the 
absence of tolerance renewal. At any arbitrary point in time, if the 
system is tested and found to be perfect, the reliability becomes equal 
to one. If the te& reveals an injury, then the system is reconfigured 
to a state of virtual perfection and the reliability is likewise equal 
to one. This paradoxical result depends on the absence of.any deterio- 
ration of the renewal mechanism, however. The concept's utility is to 
suggest to the reader. that the dynamics of redundancy management are 
all-important in maintaining the system reliability at a level that is 
unreachable by non-redundant elements. 

The actual system behavior differs in several respects from this 
concept. First, the supply of spares is not inexhaustable. Second the 
tolerance renewal mechanism is subject to degradation. Finally, the 
ability to test the system is limited by its probabilistic nature. 
These three items will be briefly discussed in the paragraphs following. 

The supply of spares is a degree of freedom available to the 
system designer. In the parallel-hybrid redundant multiprocessor, there 
can be arbitrary numbers of processors, memories, interface access 
modules, memory bus lines, interface bus lines, oscillators, and power 
converters. If the failure rates of these elements are known, and if 
the minimum numbers of each needed for system survival are known, the 
probability of exhaustion of spares as a function of time can be calcu- 
lated using conventional combinatorial analysis. 

The tolerance renewal mechanism in the parallel-hybrid redundant 
multiprocessor is largely containedin the voters and the bus guardian 
units. Both the voters and the guardian units possess bus line inter- 
faces, and therefore are both capable of degrading elements (i.e. bus 
lines) outside of their own modules (e.g. processor, memory, interface 
access). This by itself is not qualitatively different from a single 
malfunction. The important concern is that all guardians in a single 
module may fail in such a way as to enable that module to transmit on 
more than one bus line. As mentioned in the preceding chapter, design 
steps are taken to minimize the probability of this eventuality, but 
the probability is finite that it will happen. A subsequent failure of 
the module in a malevolent state could cauc.e an entire central computer 
to malfunction. 
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Figure 4.1. Idealized Tolerance Renewal. 
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Figure 4.2. Fault Latency Model. 
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Finally, we deal with the problem of detecting malfunctions. when 
they occur. If a malfunction results in a bus data malfunction, it can 
be detected by the voters. If not, it is termed "latent." Latent 
malfunctions must be considered at least as harmful as visible ones. 
It is for this reason that each critical element must be subjected to 
periodic test while the system is on line. The preceding chapter 
discussed the matter of periodic testing for some classes of elements. 
As an approximation to the testing process we assume that the detection 
of malfunctions is an exponentially distributed random process with a 
constant rate of discovery. Figure 4.2 illustrates the nature of the 
distribution. According to this model, of all the possible malfunctions 
that will occur, most of them will be detected after a lapse of several 
time constants, but some will never be detected. The parameter p 
represents the rate of discovery. The system malfunction probability 
that results from finite malfunction detection time can be modeled as a 
Markov process with constant hazard rates and constant discovery rates. 

4.4 Reliability and Maintenance 

The multiprocessor's design approach to system reliability 
consists of a combination of shielding, environmental control, redundancy, 
reconfiguration, test algorithms, voting, and high reliability design 
and manufacture of all hardware elements. In addition, the system 
software must be virtually perfect. To a certain extent, these facets 
of system reliability are synergistic. That is, once the central 
computer attains a certain degree of reliability, it becomes competent 
to serve as its own manager, and thereby becomes capable of attaining 
even greater survivability by judicious utilization of resources. 

Prior to each flight, the multiprocessor will test itself and 
the rest of the information system to purge it of latent malfunctions 
and establish accurately the degree of tolerance remaining. If this is 
adequate for dispatch, the flight will proceed, maintaining high 
reliability by the tolerance renewal procedure, including frequent 
testing of every element. In this way, a log is maintained of the 
status of every element of the system. Intermittent, transient, and 
permanent malfunctions can be distinguished, and the momentary tolerance 
made known to the flight crew. If changes in flight plan or envelope 
are called for, these can likewise be made known. 

Upon landing, the need for maintenance, if any, of the information 
system will be readily discernable,including in most cases the identities 
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of the elements that have malfunctioned. A possible byproduct of system 
fault tolerance is the realization of considerable operational cost 
saving by postponing maintenance until the aircraft arrives at a base 
where this is most economically accomplished. If the probability of 
needing a module change earlier than, say, one hundred flight hours can 
be held below one per cent, it could be well worth the inclusion of 
one or two extra spares to make this possibie. 
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CHAPTER 5 

A RELIABILITY AND AVAILABILITY STUDY 
OF THE FAULT-TOLERANT MULTIPROCESSOR 

The objectives of this study may be summarized as follows: 

1. Assess the availability/reliability of the baseline 
multiprocessor configuration with variations. 

2. Evaluate existing computer programs or develop 
alternate programs towards this goal. 

3. Evaluate the results, 

The following sections deal with each objective in detail. 

5.1 Evaluation of Existing Reliability Programs 

Two general reliability assessment programs, Care II and Tasra, 
were evaluatedto determine their applicability to the present task. An 
analysis of these programs resulted in the following.conclusions. 

The first program, Care II, does not lend itself well to modeling 
parallel hybrid redundancy. It would have to be modified considerably 
to cover this type of system architecture. The program does take into 
account degradation in the system reliability due to a lack of coverage 
but the modeling of coverage is subjective. 

The second program, Tasra, is a combinatorial reliability model, 
It does not take into account coverage, or undetected failures. 

Since it is preferable to compare different system candidates 
on a common ground, a good deal of thought was given to ways in which 
we might be able to conform these existing programs to our reliablity 
prediction task. It is our considered opinion that to do so would 
result in either a distortion of these programs to a point where they 
are no longer standard in a useful sense, or a highly erroneous 
reliability model. As an alternative, we have observed that the Markov 
process model, although not standard in the programmatic sense, is a 
widely used and well recognized mathematical tool which can model the 
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parallel-hybrid system with high fidelity and relative simplicity. 

Based on these considerations, a Markov process model of the 
multiprocessor system was developed to predict the system failure 
probability due to a lack of perfect coverage. The next section 
describes the model in detail. 

5.2 FirstMarkov Process Model of the Multiprocessor 

A system is said to be governed by a Markov process if the next 
state of the system depends only on its present state, and is completely 
independent of the past history of the system states. Such a system 
can be accurately represented by a Markov model. 

In the present case, the computer system starts out in a state 
where all units are functioning correctly. Each occurrence of a fault 
moves the system to a new uniquestate. Similarly, each fault detection 
(followed by reconfiguration of the system) also results in a new state. 
Since all of these state transitions can be defined independent of 
the past history of the system, it follows that such a system can be 
represented by a Markov model. 

Figure 5.1 shows the number of states in a general Markov model 
of the multiprocessor. The system states are divided into major groups 
or regions. Each such region is identified by the total number of 
component failures. The following four component types are distinguished: 
processor, memory, bus and the bus guardian unit (BGU). Each major 
reg'ion is further subdivided into a number of minor regions. A minor 
region is identified by 

1. the number of undetected failures U, and 

2. the number of detected failures D. 

An undetected failure implies that either the failure is not 
known (a latent failure) or that the failure has been identified but 
the recovery process has not been completed yet. In any case, the 
major point of this diagram is to show the relationship between the 
number of faults and the number of states in the Markov model. To 
solve the model numerically it is necessary to truncate the model to a 
finite number of states. Also, in order to obtain the solution 
efficiently it is necessary to minimize the number of states commensurate 
with the required accuracy of the results. The model was truncated to 
146 states based on the following reasons. The probability of the 
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# FAULTS,U+D # STATES IN MARKDV MODEL 

2 46 I n -3 REGION III,, U T u =J 
3 146 
4 361 
5 761 
6 a1000 REGION II, U + D = 2 

REGION I, U + D = 1 

/ # STATES IN EACH MAJOR REGION 

U - UNDETECTED FAULTS 
D = DETECTED b REPAIRED FAULTS 

Flgure 5.1 The Number of States in a General Markov Model. 
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system being in a state outside the truncated model after 100 hours is 
only 10 -12 (assuming there are 100 units each with a failure rate of low4 
per hour). Since any truncation of the model increases the estimated 
system failure probability, it is a conservative approximation. 

Details of the 146-state model of the multiprocessor are shown 
in Figures 5.2 and 5.3. Figure 5.2 shows a global view of the system 
states and transitions between states, while Figure 5.3 is a section of 
the state transition diagram. 

The states in the Markov model are distinguished by the following 
8-tuple vector 

’ (‘u’ ‘D’ MU’ s’ BUr BD, GU, GD). 
The eight elements of the vector show the number of undetected and 
detected failures in the processor (P), memory (M), bus (B) and BGU (G) 
units, respectively. Three types of state transitions may take place. 
The first type is from one major region to another (see Fig. 5.1). 

Type I Transition: u+) = u(to) + 1 

D(tl) = D(to) - 1 

This transition takes place when a unit fails. Each failure is 
initially undetected. The time for detection and recovery depends upon 
a number of factors including the type of failed unit, test cycle 
frequency etc. This type of transition increases the number of 
undetected failures by one. Of course the total number of failures 
also increases by one. 

Type II Transition: U(tl) = u(to) - 1 

D(tl) = D(tO) + 1 

This transition takes place from one minor region to another. It occurs 
when the system repairs itself, that is, identifies a failure and 
recovers from it. Therefore the number of undetected failures decreases 
by one, the number of detected failures increases by one, while the 
total number of failures remains unchanged. 

The last type of transition takes place when a unit failure 
results in a catastrophic failure that is, the systemfails. 

Tables 5.1 and 5.2 show the transition rates for the model 
described above. The following definitions and assumptions were made 
to arrive at the transition rates. 
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Figure 5.2 The Markov Model. 
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Figure 5.3 A Section of the Transition Diagram. 
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TABLE 5.1 

FAILURE TRANSITION RATES 
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TABLE 5.2 

RECOVERY TRANSITION RATES 

S( INITIbiL) S(FINAL) 

u>o PD=PD~l,P"=P"-l MD=q)+l,M "'M"'1 BD=BD+l,BU=BU-1 fD=GD+l,GU=GU-1 
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MODEL PARAMETERS 

. 

1. Initial Configuration 

P - Number of Processors. 
M = Number of Memory units. 
B - Number of Buses. 
G = Number of BGUs = 2 (P + M) 

2. Component Failure Rates 

1P = Processor Failure Rate. 

%l = Memory Failure Rate. 

xB = Bus Failure Rate. 

xG = BGU Failure Rate. 

3. Recovery Rates 

6P = Processor Failure Recovery Rate. 

54 = Memory Failure Recovery Rate. 

bB = Bus Failure Recovery Rate. 

6G = BGU Failure Recovery Rate. 

There are a number of state transitions that lead to a catastro- 
phic failure, that is, the system failure. The following combinations 
of undetected double failures were assumed to cause such transitions. 

1. Two processors or memory modules fail in a single 
triad, or two active buses fail. 

2. One BGU fails in the disable mode and a processor or 
memory unit in the same triad (but with a different 
BGU) also fails. 

3. One active bus fails and a processor or memory unit 
talking on one of the good active buses fails. 

4. One active bus fails and a BGU on a good active bus 
fails in the disable mode (disabling its associated 
processor or memory unit). 
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5. Two BGUs in the same triad but belonging to different 
units fail in the disable mode. 

The following combination of three faults (undetected or detected) 
causes the system to fail. 

Two BGUs in a single processor or memory unit fail in the enable 
mode and the associated unit also fails. 

It was further assumed that all triple undetected faults cause 
system failure. This assumption simplifies the model a great deal by 
reducing the number of states in the model. However it does not 
contribute to errors in any significant way since the probability of 
having 3 undetected failures is of the order of magnitude lo-l6 (assuming 
100 units with a failure rate of low4 per hour and a recovery time of 
1 sec.). In any case, it is a conservative assumption. 

The last assumption, inherent in the truncated Markov model, is 
that all quadruple faults (detected or otherwise) cause system failure. 
Based on the above assumptions, the state transition rates may be 
derived as follows. 

The transition rate for type I and III transitions is determined 
by the product of the unit failure rate and the total number of active 
units of the type involved in the transition. For example, consider 
the following transition. 

S(U = 0) - s (u = 1, Pu = 1) 

This transition involves the failure of a processor unit. There are P 
units of this type. Of these PD units have failed. In addition, due 
to the failed BGUs, of which there are G D' some processors have been 
disconnected. These can be estimated to be 

P = 
P+M GD = pD* 

The required transition rate therefore equals (P - PD - PD*) Xp. 
Similarly, the number of active BGUs for the transition 

s (U = 0) -S (U= 1, GU= 1) 

equals 2 (P - PD - PD* + M - MD - MD*). 

This is twice the sum of the active processor and memory units. When 
there is an undetected bus fault, the transition rate from this state 
to the failed system depends on the type of the bus unit involved. If 
the fault is in one of the spare buses, the system can tolerate another 
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failure of any type. However, if the fault lies in one of the active 
buses, a number of second failures could bring the system down. Let us 
assume that the rate at which such critical faults occur is X per hour. 
As a first approximation the probability that the failed unit is one of 
the three' active buses is 

3 
B - BD l 

Here B - BD is the total number of buses that could have failed. There- 
fore the effective critical failure rate or transition rate becomes 

3x 
B-B * D 

A computer program was developed to solve the 146-state Markov 
model numerically. This program, encoded in the PL/I language is listed 
in Appendix I. The following algorithm was used to solve the model 
numerically. 

gk+l = At . Ek * Q 

Here, P = state probability vector (146 X 1) - 

Q = state transition matrix (146 X 146) 

rk 
= km state probability vector 

Ek+l = state probability vector after a time-step At. 

Q(I,J) = transition rate from state I to J 

Q(I,I) = computed such that row I sums to unity. 

The time-step At is chosen such that the fastest transition rate 
in the system is less than unity. Selection of the time-step is 
affected by two conflicting factors, the accuracy of the results and 
the computational speed. Smaller steps result in more accurate results 
but require more computer' time. Figure 5.4 shows the system failure 
probability due to lack of coverage for a baseline system configuration 
(see Table 5.3) as a function of time. Results were obtained with three 
different time-steps as shown in Fig. 5.4. A time-step of 10 msec was 
chosen based on these results to solve the Markov model for other 
configurations. 

The following results were obtained regarding the probability of 
system failure due to a lack of perfect coverage (PFc). 

First of all, the system failure probability increases linearly 
as a 'function of time, as evidenced by the results shown in Fig. 5.5. 
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Although these results apply only to the first minute of the computer 
operation a simplified Markov model was solved to extend the same 
results to more than five hours. This second model is described in a 
later section of this chapter. 

A number of runs were made to assess the impact of variations in 
the system configuration and the component failure and recovery rates 
on the system reliability. In all these cases the iterative solution of 
the Markov model was continued to a point where the failure probability 
attained a nearly constant slope. This value of the slope was used to 
compute the system failure rate per hour, and is shown in Figures 5.6 
to 5.9. In Fig. 5.6 it is seen that improving all the component 
failure rates by one order of magnitude results in the betterment of 
the system reliability by two orders of magnitude. On the other hand, 
changing the recovery rates ten-fold produces a ten-fold change in the 
system reliability as shown in Fig. 5.7. In both of these cases the 
failure rates or the recovery rates were varied collectively for all 
types of units. 

The next two figures show the effect of varying the failure and 
recovery rates for each type of unit individually. It is seen that the 
system failure probability due to the lack of coverage is most sensitive 
to variations in the processor and memory failure rates around the 
operating point defined by the baseline parameters. It is least 
sensitive to the bus failure rate variation. This is simply due to the 
fact that the processor and memory failure rates are the highest of all 
at the operating point, and therefore contribute the most to the system 
failure probability. Similarly, since the recovery time from a BGU 
failure is the greatest, the system reliability is most affected by 
changes in this parameter. 

Figure 5.8 also shows the effect of varying the number' of units 
in the multiprocessor. This variation does not significantly impact 
the system failure probability due to the lack of coverage. In fact, 
decreasing the number of processors improves the system reliability a 
little since there are fewer processors to contribute to the system 
failure rate. 

5.3 Second Markov Process Model of the Multiprocessor 

The model described in the preceding section has 146 states. 
Although this has the benefit of representing the actual system 
accurately, it suffers from being computationally complex and inefficient. 
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The computation of the system failure probability was therefore limited 
to a short time span, and it was assumed based on these results that 
the failure probability continues to grow linearly as a function of time. 
To verify this assumption, a second Markov model was developed with 
only 11 states, as shown in Fig. 5.10. 

On comparison of this model to the earlier one of Fig. 5.2 the 
major differences become obvious. First, the detection of a failure 
returns the system to the perfect state, which is the starting state. 
This approximation was based on the fact that this model is being used 
to predict the failure probability due only to the lack of coverage and 
not due to the exhaustion of spares or equipment. This second phenomenon 
is considered separately in a later section. The reason one can 
separate the effects of these two mechanisms of failure is that each one 
dominates the system reliability in a differenttime span. 

The second approximation involves truncating the model to two 
faults. That is, any combination of three faults is assumed to cause a 
system failure. In this case the approximation can be justified based 
on the amount of error caused by the truncation of the model as explained 
below. 

Figure 5.11 shows that in the steady state in a typical case the 
system failure rate is 1.87 x 10 -10 per hour. Of this 1.85 x 10 -10 is 

contributed by double faults. That is, the triple fault combinations 
increase the system failure rate only by one per cent. Therefore 
truncation of the model at 2 faults causes less than one per cent 
inaccuracy in the results. 

The computer program to solve this model is listed in Appendix II. 
The result is presented in Fig. 5.12. The system failure probability, 
in fact, does increase linearly'with time, assumed earlier, for the 
first five hours. The iterative solution of the Markov model was 
stopped at this point. However it is obvious that the failure 
probability will continue to grow linearly as long as the probability of 
the system ,being in the "All Good" state (see Fig. 5.11) remains 
almost unity. This will be the case for at least several hundred hours. 

5.4 Combinatorial Reliability Model of th.e Multiprocessor 

So far we have investigated the effect of the lack of perfect 
coverage on the system reliability. This analysis showed the degree of 
susceptibility of the system to two or more near simultaneous faults, 

83 



-- -+ MODULE FAILS 

9 SYSTEM RECOVERS 

--- SYSTEM FAILS 

Figure 5.10 Simplified Cards Markov Model. 

84 



1.85 x 10-l' 

STEADY STATE 
PROB. =: 1.0 7.8~10-~ 2.7x10-l3 1.87~10-~' 

per hour 

Figure 5.11 Relative Contributions to System Failure State. 

85 



- 

- 
- 

PROB, OF SYSTEM FAILURE DUE TO 

LACK OF COVERAGE 

1 2 3 4 5 
HOURS Figure 5.12 



that is, the system failure probability due to non-zero time taken to 
detect, iden.tify and recover from a failure. It was assumed during 
this analysis that enough units of each kind were still in working 
condition to perform all the critical tasks. Eventually, of course, 
enough failures would occur SO that the supply of spare units would be 
exhausted and the system would degrade in compuational power and hard- 
ware to a point where it could no longer perform the minimum work load 
required for mission success. To study this mechanism of failure, it 
was assumed that the time to detect, identify and recover from a 
failure equals zero. That is, the system has perfect coverage. With 
this assumption, the problem of determining the system failure proba- 
bility as a function of time and number of units of each kind becomes 
a simple exercise in combinatorial analysis. 

Figure 5.13 shows a link diagram of the system depicting each 
unit as a serial or a parallel link in a chain that must remain unbroken 
for the system to function successfully. Starting from the left, the 
first group of parallel links represents P processors. Let us assume 
that a minimum of PO processors, MO memories and B. buses are required 
for flight critical performance. A BGU failure is considered to be an 
effective processor or memory failure. Therefore, in the first group, 
at least PO out of P links must remain operational for the system to be 
successful. Here each link has a failure rate of hp + 2hG. Similarly, 
the next two link groups represent the memory and the bus units 
respectively. 

Using the link diagram of Figure 5.13 one may write the following 
expression for the system failure probability by inspection. 

PFS = 1 - PSS 
P 

PSS = c - PSG2 . PSP) P-NP. 
NP=Po 

(Ep) (PSG2. PSP)NP (1 

M 
c PSM)NM (1 - PSG2 * PSM)"-NM. 

NM=Mo 
!;M, (PSG2. 

B 
c 

MB=Fo 
(iB) PSBNB. (1 - PSB)R-NB. 

Here, PF = Probability of failure of a processor (P), memory (M), BGU (G) 
or the system (S), 

and PS = Probability of success of P, M, G or S. 
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A computer program was written in the PL/I language to compute 
the system failure probability using the above equation. Figure 5.14 
shows the results for the baseline parameter values listed in Table 
5.4. It was assumed that at least three processor triads and one 
memory triad will be required to do all the flight critical tasks. 
Initially, the probability of failure due to exhaustion of spares is a 
few orders of magnitude smaller than that due to simultaneous failures. 
However the former increases at a much faster pace. Therefore at some 
point approximately a few hundred hours from the beginning the likeli- 
hood of the baseline system failing from a lack of equipment becomes 
stronger than from simultaneous failures. This predominence of each of 
the two failure mechanisms in a different mission time-span justifies 
their independent evaluation. The combined system failure probability 
due to all modes of failure is discussed in the last section of this 
chapter. 

5.5 System Failures Due to BGU Enable Failures 

A Bus Guardian Unit links the processor and memory modules with 
the buses. Its function is to prevent a failed processor or memory 
unit from corrupting information on the buses. However a BGU is also 
susceptible to hardware failures. BGU failures may be divided into two 
classes: (1) Disable Mode and (2) Enable Mode. 

In the disable mode, the unit associated with the failed BGU 
can no longer communicate on the bus. This is akin to losing a spare 
unit. However the second failure mode is not so benign. In the enable 
mode, a failed BGU connects its associated unit to more than one bus. 
Of course, two such failures do not harm the system until the associated 
unit also fails. Then the result is a catastrophic system failure. If 
there is more than one BGU in each processor or memory module, then all 
of them have to fail in the enable mode before the system is affected. 

The following equation expresses the system failure probability 
due to the BGU enable failures intermsof the processor, memory and 
BGU failure probabilities. 

FS = 1 - (1 - PFP * PFGE2)' (1 - PFM . PFGE 2M ) 

Here PF = probability of failure of a processor (P), memory (M) or 
the system (S), 

and PFGE = probability of BGU failure in the enable mode. 

. 
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Figure 5.14 Prob. of Failure Due to Exhaustion of Spares. 
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TABLE 5.3 
BASELINE PARAMETER VALUES 

SYSTEM CONFIGURATION 

# Processors = 15 
# Memory Units = 9 
# Buses = 5 
# BGUs = 48 

FAILURE RATES PER HOUR MTBF 

Processor = 1o-4 lo4 Hours 
Memory = lo-& ' lo4 
Bus = lo+ lo6 
BGU = 1o-5 lo5 
BGU Enable = 5 x 10-6 2 x lo5 
BGU Disable = 5 x lo+ 2 x lo5 

RECOVERY RATES (Time to Detect, Identify & Recover From a Failure) 
RATE TIME 

Processor = 1 per second 1 second 
Memory = 1 1 
Bus = 10 0.1 
BGU = 0.1 10 

TABLE 5.4 
BASELINE PARAMETER VALUES 

INITIAL SYSTEM CONFIGURATION MIN. REQ'D FOR FLT. CRITICAL PERFORMANCE 

# Processors = 15 PO = 8 
# Memory Units = 9 MO = 2 
# Buses = 5 B. = 2 
# BGUs = 48 

FAILURE RATES 

Processor 
Memory 
Bus 
BGU 
BGU Engble 
BGU Disable 

PER HOUR 

1O-4 
1o-4 
lo+ 
1o-5 
1 x lo+ 
9 x lo+ 

MTBF 

lo4 Hours 
lo4 
106 
lo5 
lo6 
1.1 x lo5 
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This equation assumes two BGUs in each processor and memory module. 
Figure 5.15 shows the system failure probability due to this failure 
mechanism as a function of time. Baseline parameter values from Table 
5.4 were used to arrive at these results. It was assumed that the 
enable mode failures can be biased to be less probable than the disable 
mode ones. The impact of improving the BGU enable failure mechanism is 
also shown in the same figure. An order of magnitude improvement in the 
BGU failure rate decreases the system failure probability by two orders 
of magnitude. 

Another way to diminish the system susceptibility to enable mode 
failures is to increase the number of BGUs in each module. Figure 5.15 
shows the system failure probability when each module has 3 BGUs. The 
result is a 3 order of magnitude decrease in failure probability. 
However it also slightly increases the system failure probability due 
to the exhaustion of spares as shown in Fig. 5.14. This mode of failure 
also impacts system availability or dispatch reliability. This is 
dealt with in the next section. 

5.6 System Availability/Dispatch Reliability 

Dispatch reliability in the present context may be defined as 
the probability of having the computer system before each flight in a 
condition good enough to meet the mission reliability requirements. 
That is, there should be enough operating modules in the system to 
assure a given probability of success at the end of, say, a ten hour 
flight. Dispatch reliability is important because it directly affects 
system maintenance cost. For an airline, a high dispatch reliability 
of the computer system could mean fewer maintenance points along its 
routes with consequent savings in operating cost. 

A given level of dispatch reliability can be achieved for the 
present system by varying the number of spares for each type of module. 
A relationship is developed between these two variables as follows. 

Table 5.5 re1ate.s the system size to.the system reliability for 
the baseline failure rates defined in Table 5.4. Let us assume that 
the required probability of failure at the end of a 10 hour flight is 
1o-g or smaller. It is now possible to pick out from Table 5.5 a 
minimum system size that will meet the required mission reliability 
criterion. This system size is 11 processors, 5 memory units and 3 buses. 
To this basic size we would have to add enough spares to meet a required 
dispatch reliability PS at a time T. Table 5.6 shows three system 
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Figure 5.15 System Failure Prob. Due to BGU Failures in Enable Mode. 
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TABLE 5.5 

EQUIPMENT FAILURE PROBABILITIES 
P = 11, M - 5, B = 3 

OPERATING EQUIPMENT BEFORE PROB. OF FAILURE DUE TO LACK OF 
TAKE-OFF EQUIPMENT @ 10 HOURS 

P M B 

15 

12 

12 

11 

11 

11 

11 

10 

<lo-l6 

2 x lo-l2 

3 x lo-lo 

9.8 x 10-l' 

9.9 x lo-lo 

7.9 x 1o-g 

4.4 x lo+ 

2.1 x 1o-7 

TABLE 5.6 

INITIAL CONFIGURATION SO THAT AT LEAST 11 PROCESSORS, 5 MEMORY UNITS 
AND 3 BUSES WILL SURVIVE WITH A PROB. PS AFTER 300 HOURS 

DESIRED REQUIRED CONFIG. 
PS P M B ACTUAL PS 

0.99 13 7 3 0.988 

0.995 14 7 3 0.996 

0.999 15 8 4 0.9998 
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configurations to meet three different dispatch reliability requirements 
at a fixed time T equal to 300 hours. This figure was chosen for time 
because for most airlines an aircraft would undergo periodic engine 
maintenance at its home base, which has all the maintenance facilities, 
in 300 hours or less. For a fixed system configuration, decreasing the 
aircraft turn-around time would obviously increase the system dispatch 
reliability. This is shown in Fig. 5.16 for each of the three system 
configurations of Table 5.6. 

For the present system, the probability of failure during a 
flight depends not only on the amount of equipment operating before 
take-off but also on the number and type of failed units in the system 
before take-off. This is due to the BGU enable mode failures described 
in the preceding section. Table 5.7 shows the system failure probability 
after 10 hours for various initial configurations of failed modules. 
It is evident that the most significant contribution to the system 
failure probability is made by a BGU failed in the enable mode. The 
probability of at least one BGU failing as such in the baseline system 
in 300 hours is 0.015. That is, the dispatch reliability would be 
0.985 considering only the BGU enable failures. 

One way to'reduce the impact of BGU failures on the system dis- 
patch reliability is to increase the number of BGUs in each processor 
and memory module from two to say, three. The result is again shown 
in Table 5.7. For this system configuration, the dispatch reliability 
for a 300 hour aircraft turn-around period would increase to 0.999994. 
The next section summarizes the results of the relibility study. 

5.7 Summary 

So far we have investigated three different mechanisms of failure 
which can result in a catastrophic system failure. These are 

1. Occurrence of near simultaneous failure of two 
or more units, 

2. Failure of Bus Guardian Units in the enable mode, 

3. Exhaustion of equipment. 

It was stated earlier that each cause is predominant during a different 
time span. Therefore it was possible to study the probability of system 
failure due to each cause separately. Figure 5.17 combines the results 
of the three different studies. It shows for a representative case the 
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TABLE 5.7 
ANALYSIS OF SYSTEM FAILURES DUE TO BGU FAILURES IN ENABLE MODE 

TOTAL EQUIPMENT: P = 15, M=9 
FAILURE RATES: 

AP 
= 10-4 per hour 
= 10-4 

P or M 

Ea 

AM per hour 

x GE 
= 10-6 per hour 

,BGU BGU 

INOPERATIVE EQUIPMENT PROB. OF SYSTEM FAILURE 
BEFORE TAKE-OFF AT 10 HOURS 

NONE 
1 x lo-l3 
1 x lo-lo 

2 x lo-lo 

3 x lo-lo 

1 x 1o-8 

Id El 2 x 1o-8 

HaHH 2 x 1o-8 

X 

a 1 x 1o-5 

I 
a 1 x 1o-3 

lia 3 BGU SYSTEM 1 x lo-l3 

lid 3 BGU SYSTEM 1 x 1o-8 

PROB. 1 BGU FAILS IN ENABLE MODE (OUT OF 48 BGUs) IN 300 HRS: 0.015. 
PROB. 2 BGUs FAIL IN THE SAME MODULE (OUT OF 72 BGUs) IN A 3 BGU 

SYSTEM IN 300 HOURS: 6.5 x 10-t 
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system failure probability due to all possible failure modes for a time 
period of one thousand hours. It is seen that initially the probability 
of catastrophic system failure is low and dominated by near simultaneous 
failure of two or more units. Eventually, the system may fail due to a 
lack of spares. 

Results regarding system availability can be summarized as 
follows. The BGU enable mode failures can have significant impact on 
the system availability for the baseline system configuration and 
failure rates. This can be almost totally eliminated by biasing BGU 
failures against the enable mode or by having three BGUs in each 
processor and memory module. Having taken care of this, the baseline 
system is seen to have a dispatch reliability of greater than 0.9999. 
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CHAPTER 6 

AN APPROACH TO SOFTWARE RELIABILITY 

This chapter describes the specific means by which a low-cost 
systemcouldsupport development of software for the fault-tolerant 
multiprocessor computer system. 

6.1 Introduction 

Software development has proved to be overly expensive, in terms 
of both initial costs and overall life cycle costs. Advanced software 
development tools are required to ensure manageable software life cycle 
costs. This chapter introduces and justifies a comprehensive software 
methodology called Higher Order Software (HOS) which is applicable to 
software development for the multiprocessor. 

HOS is a discipline which lowers software life cycle costs. The 
basic HOS axioms, tools, and methods have been described elsewhere [51. 
This chapter introduces the HOS tools and describes their functions 
briefly. Subsequent portions of this chapter describe applicable HOS 
methods and detail how these HOS facilities could be implemented at low 
cost. 

6.2 Higher Order Software Methodology 

HOS originated during software development for APOLLO and for 
SKYLAB. The APOLLO software development required approximately 2,000 
man years, during which extensive software anomaly lists were maintained 
for later analysis. These data show that 13% of the software errors 
uncovered during systems integration were analytical errors, such as 
specifying sine when cosine was intended. An overwhelming 73% majority 
of the errors, on the other hand, were associated with interactions be- 
tween modules. These errors fall into categories such as misinterpreting 
s.ubroutine calling sequences, passing the wrong arguments, treating 
variables in the wrong way, misinterpreting interface specifications, 
and the like. Because most errors involved interactions between modules, 
it would have been little good to "prove the correctness" of individual 
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modules. The APOLLO experience showed that programmers can in general 
develop correct modules. Most errors arise in interfacing modules in- 
correctly. Accordingly, HOS methods concentrate on ensuring that 
interfaces between modules are correct. 

In the course of HOS development, six axioms concerning relation- 
ships between system modules were stated. These axioms are defined 
rigorously in 151 and stated informally at the end of this chapter. If 
all system components interact in a manner consistent with the HOS 
axioms, the interface errors which so plagued the APOLLO software 
development effort are automatically eliminated. The effect of follow- 
ing the HOS axioms is to guarantee interface consistency on a SyStem- 
wide basis. This would-have eliminated 73% of the APOLLO software 
integration errors. 

Programmers tend to regard the HOS axioms as obvious, and claim 
to follow them. Experienced managers,however, are well aware that 
programmers do not always program in a systematic manner. In order to 
ensure that systems follow the rules, HOS incorporates analyzers which 
detect system specifications and module interactions which are not 
consistent with the axioms. The HOS analyzers and other automatic tools 
are listed and described briefly here, and are discussed in detail below. 

1. Specification Language and Specification Analyzer. 
The specification language is used to describe relationships be- 
tween system modules in an unambiguous manner. The specification 
analyzer examines the system specifications for relationships 
between modules which are not consistent with the axioms. The 
analyzer also generates a diagram showing how the system compon- 
ents interact. The system description presented to the specifi- 
cation analyzer is not intended to describe a specific system 
implementation. This function is served by other HOS tools. 

2. Higher Order Interface Language (HOIL). 
A HOIL is used to implement the software portion of the system 
after it has been described using the specification language. A 
HOIL is a programming language in which statements describing 
interactions between modules can be easily identified so that 
they can be checked for consistency. A HOIL may or may not 
contain other facilities such as supplied by compiler languages. 
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3. Interface Analyzer. 
After modules have been implemented using a HOIL, the interface 
analyzer examines interfaces between the modules to determine 
whether or not the interfaces are consistent with the specifi- 
cation. This is feasible because a HOIL provides information 
which makes interfaces easy to locate. 

4. Control Mapper. 
The mapper also examines interface specifications after the 
modules have been implemented using the HOIL. The mapper draws 
a picture of the relationships between modules, which is checked 
to be sure that the specification has been implemented properly. 
This map reveals the relationship between the various software 
components, and serves as a documentation aid. 

5. Concordance Generator. 
The concordance program produces a list of all data in the system 
and tells where each datum is referenced. References are cate- 
gorized in terms of examine only, store only, and both store and 
examine. This list makes it easy to find all modules which 
reference a given datum, regardless of the different names which 
are used in different modules. 

6. Narrative Documentor. 
The documentor collates the program listing with descriptions of 
the data used by the program. When data are referenced in a 
module, the documentor copies the data description into the 
program listing. This ensures that data have to be documented 
only once, and that the documentation and the source listing are 
kept together. This is helpful during maintenance. 

Most of these facilities do not require any more information than 
is already available to the language processor, and some compilers 
provide part of this information to users. All FORTRAN compilers, for 
example, are aware of the uses of all variables which are referenced in 
a program, but many do not print this information inthelisting. 
Furthermore, FORTRAN compilers. do not generate information which can be 
examined for consistency between modules. The HOS specification 
analyzer ensures that only proper relationships between modules are 
included in the design, and a HOIL processor generates information 
needed so that other routines can verify that the interfaces described 
in the specification have been implemented properly. The information 
provided by a HOIL processor makes it possible to generate the data 
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concordance and control map economically. These tools fit together 
smoothly because the fundamental HOS axioms are well chosen. Not only 
do the axioms seem obvious, but when systems are designed to be consistent 
with the axioms, they become easier to understand, maintain, and modify. 

6.2.1 Specification Language 

The HOS specification language allows a designer to describe 
system structure and control flow unambiguously. The description of 
relationships between the parts of a system is independent of how the 
parts are implemented. For example, information is transmitted to and 
from hardware modules via wires. Information is passed between software 
functions through the calling sequence. Finally, if work is performed 
by a human operator, information is passed via a display and keyboard of 
some sort. The specification language allows all of these information 
transfers to be described in the same way. This separation between 
specification and implementation allows the design to be completed 
before final partition between hardware and software, so that tradeoffs 
between hardware and software can be optimized over the entire design. 
The important concept is that the specification language provides a 
consistent mechanism for describing information flow and control 
structures. This eliminates interface errors which are not otherwise 
found until system integration, by which time they are costly to 
eliminate. 

Most system specifications and designs are ambiguous. There are 
often difficulties in understanding the intent of the specifications, 
and time is lost in verifying that the interfaces are consistent. The 
HOS specification language is formalized so that a specification can 
be checked automatically for consistency before implementation. This 
eliminates inconsistencies in the specification which are usually not 
found until well into the implementation. In addition, as modules are 
implemented, their interfaces are compared with the specification. 

The specification language does not ensure that the modules which 
implement the specification will do what was originally intended. It 
does, however, make it possible to verify interfaces between parts of 
the system, and ensures that all portions of the specification use a 
common syntax. The purpose of the specification language is to minimize 
confusion by ensuring that all parties express their part of the design 
in the same language and that each part of the system is consistent with 
the rest of the system. Because the HOS specification only defines 
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interfaces between parts of the system, it is not possible to automatical- 
ly generate the system from the specification. It is, however, possible 

.to add module definitions to the interface specifications, and have the 
specification evolve into the final system. 

6.2.1.1 Control Structures 

In present design practice, complex problems are divided into 
smaller problems, each of which is defined as a new problem. The divi- 
sion process continues until the problems are small enough to solve. 
Hopefully, the aggregation of the small solutions solves the original 
problem. In order for this to work, it is necessary to define problems 
and their solutions so that the solutions fit together properly. One 
of the functions of HOS is to monitor the process of dividing problems 
to ensure that interfaces between parts of the solution are correct. 
The HOS axioms define a set of valid methods of dividing big problems 
into small problems so that the solutions work together. In other words, 
HOS formalizes present intuitive design practices so that system 
components work reliably and predictably. 

Solutions which collectively solve a larger problem can be 
thought of as occupying a common hierarchical level which is subordinate 
to the level occupied by the larger problem. The larger solution may 
be part of the solution of an even larger problem, and so on. This 
hierarchy is the result of the decomposition of functions into simpler 
functions. The function decomposition is carried to the point where 
the functions can be implemented easily. 

The lack of standard terminology for parts of a solution causes 
a great deal of confusion between solutions to problems and the means 
used to implement the solutions. Mechanisms used to solve problems are 
referred to as subsystems, modules, components, functional modules, 
subroutines, functions, or whatever, depending on the perspective of 
the persons responsible for the solutions. 

For the sake of defining a precise term, "function" refers to any 
problem solution, no matter how the solution is implemented. A function 
may or may not be made up of subordinate functions. The defining 
characteristic is that a function is given information, operates on this 
information, and gives back other information. 

104 



It is common to refer to a "large" function as a "system". The 
formal HOS terminology does not draw distinctions between functions 
which are made up of subordinate functions and functions which are not. 
However, it is satisfying to have a special word which refers to the 
topmost function and it is common to refer to this function and all of 

its subordinate functions collectively as a "system". 

The relationship between functions is called a "control structure". 
The control structure describes information flow between functions and 
determines when each function is invoked. When the, control structure 
is drawn out so relationships betweenfunctions are visible, the result- 
ing picture is called a "control map". The HOS specification language 
is really a means of describing a control structure. This description 
lists the input variables and output variables for each function. A 
function description, of course, may consist of a number of subordinate 
functions. The specification analyzer enforces rules based on the HOS 
axioms which restrict the relationships between functions so that the 
interfaces are correct. The specification analyzer examines the 
function descriptions and maps the specified system. The map generated 
by the specification is later compared with the map showing relationships 
between the functions as they are implemented. This highlights 
differences between the specification and the functions which are 
actually implemented. 

An initial high level specification contains only a few functions, 
and it is relatively easy to keep track of interfaces at that point. As 
the design evolves, however, more and more functions are added. Current 
system specifications are checked manually at several points in the 
design cycle, but this is too costly to be done at each stage of refine- 
ment. The automatic HOS analysis may be repeated as often as necessary 
to ensure that the specification is consistent at each stage before 
work starts on the next stage. This ensures that errors are eliminated 
at the earliest possible time. The analysis not only verifies that the 
specified information flow is appropriate, but it ensures that the over- 
all control structre is valid. 

6.2.2 Higher Order Interface Language. (HOIL) 

The HOIL provides the means by which the software portion of the 
control structure is implemented. The purpose of any language is to 
allow its users to communicate their thoughts to other parties. Computer 
language processors are the intermediaries by which the programmer's 

105 



thoughts are rendered in a form which is comprehensible to the computer. 
Compilers and assemblers examine statements expressing the desires of 
the programmer in order to generate computer code sequences which per- 
form the requested functions. Language processors not only generate 
code to operate on the data types supported by the language, but in 
addition generate code for subroutine linkage, parameter passing, task 
invocation, and the like. In general, the more code sequences that are 
generated automatically, the easier a language is to use. Furthermore, 
the more computer-dependent details that are handled automatically, the 
less the programmer has to know about the specific machine, and the 
easier it is to transfer programs to other computers. 

A Higher Order Language allows programmers to express operations 
on variables but demands that variable usage in each module be consis- 
tent with variable use in other modules. That is, HOIL statements which 
manipulate variables can be located by the interface analyzer, which is 
aware of global considerations regarding variable usage, and verifies 
that such usages are consistent. Therefore, the HOIL not only generates 
code sequences to operate on the variables, it also generates the 
information required to verify that only appropriate operations are 
requested. 

Some compilers enforce consistent variable use within individual 
modules. FORTRAN compilers, for example, automatically convert variables 
to a common type before performing arithmetic. However, this does not 
prevent a particular variable from being treated as integer in one module, 
real in another, and complex in a third. Such inconsistent variable 
usage usually causes errors, and such errors are often extremely costly 
to locate. It would be cost effective to eliminate them on a global 
basis using a HOIL and an interface analyzer. 

Past efforts at making better software development tools have 
assumed that these tools would emerge as additions to compilers and 
augmentations of compiler languages. A common objection to the use of 
a compiler to generate code for limited memory flight computers is that 
the code generated by a compiler is usually less efficient than code 
generated by hand. As will be shown below, hoever, it is possible to 
obtain the benefits of a HOIL by augmenting an assembly language. 
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6.2.3 Interface Analyzer 

A control structure which conforms to the HOS axioms is analogous 
to a well-ordered military hierarchy. The design of the chain of command 
assures that orders are accepted only from an immediate superior and 
are transmitted only to the subordinate or subordinates responsible for 
their execution. Orders or information which bypass the chain of 
command are frowned upon. Such orders may be tolerated in a hierarchy 
composed of humans, because people are sufficiently adaptable to work 
out what to do under unexpected conditions. Functions, however, cannot 
deal with the unexpected and therefore have no capability to "muddle 
through". In a system structured according to HOS rules, no function 
may be activated except in response to requests from above. No function 
may access information unless the right to use it'is transmitted from 
above, and all output information is returned only to the authorized 
function. 

Just as people in a hierarchy are tempted to try to obtain 
information or exercise influence outside of channels, programmers are 
tempted to "improve" software systems by distributing information in 
unauthorized ways. Human functions are somewhat self-directing, and if 
their input changes format without notice, they can often figure out 
what to do. While unexpected changes merely inconvenience the human 
hierarchy, they are disastrous in a software system. One of the most 
common unauthorized software interfaces is for one subroutine to take 
advantage of the fact that critical data are left in certain registers 
by another routine. This saves a few machine cycles loading and storing 
the variables, but the interface between the two routines is nonstandard. 
When a maintenance programmer changes the register usage in the first 
program, the other program blows up. This rule violation greatly 
increases maintenance costs. 

Checking the interfaces in a system is analagous to examining a 
chain of command and ensuring that all relationships between members of 
the hierarchy are correct. Not only must the communication paths be 
appropriate, but the messages transmitted on these channels must be 
germane. Only necessary information may be passed to a function, and a 
function may only return information needed by its superior. The HOS 
interface analyzer examines relationships between functions and 
verifies that they correctly implement the control structure defined 
using the specification language. 
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In a software system, functions are often called subroutines, and 
information is passed between subroutines via calling sequences. The 
interface analyzer examines calling sequences to determine the hierarchi- 
cal relationships between subroutines and the information which is passed 
between them. This illuminates the control structure which has been 
implemented by the collection of subroutines. The control structure 
realized by the subroutines is compared to the control structure 
specified in the design, and discrepancies are noted. This allows HOS 
users to be sure that a collectionofsubroutines actually implements 
the intended confrol structure, and assures managers that the programmers 
have followed the rules. 

6.2.4 Control Mapper 

The mapper uses information obtained by the interface analyzer to 
draw a diagram showing the relationships between functions. This 
hierarchical diagram contains basically the same information as the 
specification, but is derived from the functions as they are implemented. 
This makes the system structure visible, so that it can be compared with 
the intended structure. It is possible, of course, that discrepancies 
may result from design changes caused by unforeseen implementation 
difficulties. In this case, the specification is changed to reflect 
the realities of the implementation, but in either case, it is necessary 
to resolve'any discrepancies. 

The information in this version of the control map is somewhat 
redundant with respect to the control map generated by the specification 
language analyzer, but it is directed at a different audience. The 
specification control map clarifies functional relationships for the 
designer before implementation. The function control map illustrates 
functional relationships which have been implemented using the HOIL. 

Past efforts at generating system structure diagrams have 
attempted to derive complete flow charts of each function by examining 
the code. This has proved to be very difficult in the general case. 
Systems structured according to HOS principles, however, are much 
easier to diagram than systems which do not follow the rules. Further- 
more, HOIL statements make the specifications of the relationships 
between functions more visible, which simplifies the mapping task 
significantly. As a result, the HOS control structure mapper is able 
to illustrate the system structure clearly and accurately. 
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6.2.5 Concordance Program 

The task of the concordance program is to list all modules which 
affect data in the system. This information is obtained from the 

. interface analyzer. The concordance is not intended as a design aid, 
although it can be useful during system implementation. The concordance 
is most useful during maintenance, when a programmer who is not familiar 
with the overall system must quickly isolate the effects of a proposed 
change. The concordance helps maintenance to be carried out with 
minimal knowledge, and minimizes the probability that a change will have 
unexpected side effects. 

The importance distinction between the HOS concordance and past 
concordance programs is that the HOS facility follows data, not names 
which are used to refer to data. In most software systems, the names 
by which one routine refers to data which it passes to a subroutine are 
different from the names by which the subroutine refers to the same data. 
Because it has proved difficult to coerce or persuade programmers to use 
consistent variable names, it is necessary that the concordance program 
track the renaming of data across module interfaces. As shown in the 
example below, the HOS concordance lists fewer separate variable names 
because it combines references to the same datum. 

In addition to listing references to data which are passed 
between functions, the concordance generator processes data which are 
internal to a function. When data are internal to a function, concord- 
ance generation is simply a matter of noting the line numbers of all 
statements which refer to the name of the internal data. 

6.2.6 Narrative Documentor 

It is not uncommon for documentation to become separated from . 
the code which implements the functions. Even when the documentation 
is preserved, it usually is made obsolete as the system changes. The 
HOS documentor automatically collates available documentation with the 
program listing of each function, and flags functions which have been 
updated without corresponding documentation changes. The documentor 
has access to a library containing abstracts of each function and 
descriptions of each datum. The documentor processes a function after 
it has been processed by the interface analyzer and the concordance 
generator. At this point, all data and all functions referenced by the 
function are known, and the documentor appends the appropriate abstracts 
to the function listing. This generates some redundant information, 
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because data descriptions are repeated whenever data are referenced, but 
a maintenance programmer modifying a function finds all pertinent 
information in the same place. 

Another important advantage is that data descriptions and function 
abstracts are maintained in the same data base as the source code. 
Thus, whenever a function is changed, the documentor is aware of the 
change, and signals that the documentation must be brought up to date. 
As variables are added, the documentor demands that their descriptions 
be added to the abstract file. At any time, management can interrogate 
the documentor to determine how many functions have been changed without 
corresponding documentation updates, and how many variables are undocu- 
mented. This encourages programmers to keep the documentation current. 
Not only does this eliminate the usual frantic documentation rush at 
the end of the project, but documentation is actually available during 
the project. It has been found that system documentation can be quite 
useful during a project, especially when it proves necessary to replace 
project personnel. New staff members can make use of the documentation 
to familiarize themselves with the system. 

6.2.7 Example 

The following example illustrates the application of HOS 
techniques to a very simple system. The example shows how the tools 
are used, and what their outputs look like. 

6.2.7.1 Development of the System Specification 

As was stated above, the specification language is concerned 
mainly with relationships between functions. Detailed function descrip- 
tions are deferred until the functions are implemented. Because 
function details are unimportant at this stage, the specification 
language requires only that inputs, outputs, and hierarchical relation- 
ships be defined. 

For example, a function may initially be specified as 

Y = F(X). 

The input variable of function F is X, and the output variable 
is Y. This is a sufficiently detailed definition of the function for 
the purposes of the specification language. It may later be decided 
that function F should be implemented with two subordinate functions, 
Fl and F2. These subordinate functions are invoked from F, and passed 
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the data they need, The structure then looks like 

Y = F(X) 

Y = F2(G) G = Fl(X) . 

Function F has been decomposed into two subordinate functions but 
can be treated as a single entity if the level of detail provided by Fl 
and F2 is not needed. The specification language analyzer observes that 
~1 and F2 do not use variables which cannot be passed to them by their 
parent F, and that they do not alter data which their parent is not 
authorized to alter. In addition, the specification analyzer notes that 
temporary variable G is created by one function and used by another on 
the same level. The specification conforms to the axioms, and is passed. 

At a later point in the design cycle, function Fl is further 
broken down. The specification is altered to look like this: 

Y = F(X) 

Y = F2(G) G = Fl(X) 
G = F4(P) P = F3(X) 

The analysis is repeated to ensure that the change has not 
resulted in an improper specification, and the design is complete. 

In order for implementation to begin, the designer must describe 
the functions and the variables to the implementation staff. The logical 
way to do this is to write the function descriptions and put them in the 
abstract file for the documentor. Thus, the function and data descrip- 
tions are available from the beginning of the project, and are added to 
the source listings from the beginning of implementation. This helps 
the programmers keep the purpose of each function in mind as it is 
implemented. 

6.2.7.2 Use of the HOIL .------ 

The most important characteristic of the HOIL is that interfaces 
and variable use are illuminated for analysis by other HOS tools. 
Therefore, the following illustration shows only sample interface 
statements. The interface statements required for a real system may be 
somewhat more complex. This example does not show the process of 
verifying that data passed between functions is treated consistently. 
In a real situation, it is also necessary to inform the HOIL of all 
variable types in order to allow the interface analyzer to verify the 
use of the variables. 
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ENTRY(F) INPUT(X) OUTPUT(Y) 

GLL(F1) INPUT(X) OUTPUT(G) 

CALL(F2) INPUT(G) OUTPUT(Y) 
. . 
Y= . . . 
RETURN 
END(F) 

ENTRY(F1) INPUT(P) OUTPUT(Q) 
. . 
CALL(F3) INPUT(P) OUTPUT(M) 

CALL(F4) INPUT(M) OUTPUT(Q) 
Q = . . . 
RETURN 
END(F1) 

ENTRY(F2) INPUT(R) OUTPUT(M) . . 
M= . . . 
RETURN 
END(F2) 

ENTRY(F3) INPUT(L) OUTPUT(M) . . 
M= . . . 
RETURN 
END 

ENTRY(F4) INPUT(M) OUTPUT(N) 
N = . . . 
RETURN 
END 

Although there are very few functions implemented, and only the 
interface statements are shown, the collection of listings obscures the 
control structure. Even though the HOIL interfaces are easy to examine, 
the control structure is not nearly as easy to see as it was in the 
original specification. 

The data flow is even harder to follow, because the programmers 
have not used the same names to refer to the same data. In particular, 
variable name M refers to one datum in function F2 and to an entirely 
separate datum in functions Fl, F3, and F4. Manual analysis is quite 
difficult for small systems, and impossible for large systems. 
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6.2.7.3 Interface Analysis 

These HOIL statements are examined by the interface analyzer. 
The analyzer finds the ENTRYs and CALLS which tell it which variables 
are involved in th.e interaction between the modules. The analyzer notes 
that F has the proper number of inputs and outputs, and that these are 
passed to the subordinate functions of F. In addition, although this 
example does not show the data type declaration statements, the 
analyzer verifies that the data transmitted and received by the various 
functions are of compatible types. 

The programmers responsible for implementing Fl and F2 have 
chosen different names for their references to variables X, Y, and G. 
Depending on the managerial philosophy of the project, the interface 
analyzer can either follow the name change or demand that the subordin- 
ate functions use the names defined in the specification. In either 
case, the analyzer finds that function F calls on two subordinate 
functions Fl and F2, using variables X, Y, and G, as called for in the 
specification. This verifies that the implementation of the interfaces 
between function F and the rest of the system is consistent with the 
specification. Further analysis is performed on the other functions, 
and they pass depending on whether or not variable renaming is allowed. 

6.2.7.4 Control Mapping 

Because the HOIL implementation of the functions has obscured the 
relationships between functions, the control mapper is used to re-illumi- 
nate the control map. In this case, the map looks like this: 

F 
--Fl 

--F3 

--F4 

--F2 

This notation clearly illustrates the relationship between the 
various modules. A more complex system would produce a more extensive 
map, of course. This notation is somewhat more compact than the 
original specification, and allows larger control maps to be printed on 
a single page. The compact format is advantageous because this version 
of the control map is likely to be generated often as implementation 
proceeds. 
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6.2.7.5 Concordance Listing 

The HOS concordance shows all data and where they are used. 
Previous programs have generated global variable reference tables, but 
they lack the capability of tracing data under different names through 
module interfaces. In order to highlight the differences between a 
conventional concordance and the HOS concordance, examples of both are 
presented. Although a real concordance would provide the locations 
within each function where data were referenced, these statement numbers 
are omitted from the examples for clarity. The conventional concordance 
for this example would look like: 

Variable Uses 

G F Stored F Referenced 

F3 Referenced 
F4 Referenced Fl Referenced F2 Stored F3 Stored 
Fl Stored F4 Stored 
Fl Referenced 
Fl Stored 
F2 Referenced 
Fl Referenced 
Fl Stored 

This conventional concordance is not very useful because program- 
mers have re-named variables at the interfaces to the various sub- 
routines. This makes it impossible to determine which routines manipu- 
late which data. The HOS concordance program has access to the output 
from the interface analyzer. The analyzer traces data through the 
various names used in the different modules. The HOS concordance is 
much shorter, because there are fewer data than names, and the HOS 
concordance has an extra column, giving the names which refer to the 
data in each function. This illustrates clearly that variable M in 
function F2 is not the same variable that is referred to in functions 
Fl, F3, and F4. 
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Datum Vble Datum 
Name Name References 

G G F Stored F Referenced F2 Referenced as R 
F4 Stored as N Fl Stored as Q 

P .M Fl Stored F3 Stored F4 Referenced 

X X F Referenced Fl Referenced as P F3 Referenced as L 

Y Y F Stored F2 Stored as M 

There are fewer variable names in the HOS concordance. This is 
because there are really only four data- X and Y, which are the input 
and output variables of function F, and G and P, which are the temporary 
variables which pass data between the subordinate functions of F and Fl. 
The datum name is obtained from the specification. The variable name 
is assigned by the highest level function which refers to that datum, 
no matter what names are used by other functions to refer to the same 
datum. This concordance makes it possible to follow data use across 
interfaces which may not use the same names to refer to the same data. 
This information is vital to maintenance programmers. In order for the 
programmers responsible for individual modules to be able to tell which 
datum their names refer to, the narrative documentor adds the system 
name to the variable list generated for each module. 

This simple example illustrates the complexities of tracing data 
use manually, and makes the 73% interface error figure from APOLLO quite 
understandable. The HOS data flow tools eliminate these errors by 
clarifying the effects of variable references and name changes. It 
might be added in passing that as long as the interface analyzer can 
isolate references to the original data names, it would be perfectly 
possible for it to edit programs so that they refer to the common set 
of names. This might be deferred until after system delivery, in order 
not to unduly ruffle the programmers. 

6.3 Implementation 

The HOS rules have been shown to be effective in past software 
development efforts. It is possible to verify the control structure 
and module interfaces manually, but this is a costly process. It is 
much better to automate the required analyses. The proposed interface 
analyzer and HOIL are implemented as a single tool which is specifically 
tailored for the fault-tolerant multiprocessor. The specification 
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language and control mapper are much more general purpose facilities, 
and are therefore not treated furt!ler in this report. The other tools, 
however, are specific to the multiprocessor and are described at much 
greater length below. 

6.3.1 Implementation of the HOIL and Interface Analyzer 

The proposed HOIL is a low cost flexible extension of the assembly 
language for the processors. The HOIL provides facilities for describ- 
ing interfaces b$tween subroutines and for specifying how variables are 
to be used. These interfaces between modules are analyzed to verify 
that all interfaces are consistent, and that all variables are referenced 
correctly. These verification facilities and interface specification 
facilities, when added to the assembler, produce a HOIL and interface 
analyzer designed specifically for the computer. 

The HOIL is implemented as a pre-assembly macro processing step. 
Macros are written to generate assembly language code for all necessary 
inter-module interface functions. As each interface macro is written, 
the analyzer is extended to verify its use. HOIL and interface analyzer 
development are incremental processes, which can be carried as far as 
necessary to support a particular application. 

Whenever a variable appears in an interface macro, the analyzer 
checks its type to ensure that the function being called treats it in 
the same way. All system data used in a function are declared as part 
of the interface expected by the program, and references to global 
variables which are not listed are flagged. 

In addition, whenever a variable name appears in the program, the 
analyzer checks to make sure that it is being used in a manner consistent 
with its type. In order to allow this, macros are written to generate 
assembly code to perform arithmetic operations. Normally, when 
variables participate in arithmetic operations, the operational logic 
is obscured when the assembly language instructions for loading 
registers, computing, and storing the result are coded individually. 
However, the macro 11=11 allows such operations to be coded as: 

A= B+C 

The algebraic form of the expression is much easier to understand. 
Also, the W=W macro processor checks the specifications of variables B 
and C, and complains if they are not appropriate variables to be added 
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together. 

An advantage of this approach is that if it is later decided to 
add special purpose hardware or microcode to the computer, the macro 
definitions may be changed to generate code to take advantage of the 
new facility. This will not require changing the programs. In fact, if 
the computer is provided in several versions which have different 
facilities, the same programs can be assembled for different versions 
by using different macro libraries.. 

6.3.1.1 Steps in Developme and Interface Analyzer --- ---_ 

A HOIL processor generates code for a specific computer, and must 
be designed for the computer being used. The following steps are e 
needed to develop the HOIL described above: 

1. Examine the selected computer architecture and determine 
how interfaces between modules are to be implemented. These 
functions include such facilities as CALL, Define Data, 
Receive Data, Fork, Join, Wait, Post, and the like. 

2. Select an appropriate macro processor. There are many 
suitable macro processors available. 

3. Code macros to implement the necessary interfaces. 

4. Write a program to scan source code for occurrences of 
interface macros and check them for consistency. 

5. Expand the function of the interface checker to verify the 
use of variables. 

6. Write a program to print the results of the interface 
analysis as a data concordance. 

7. Write a program to print the results of the interface 
analysis as a control map. 

Powerful general purpose macro processors are available at CSDL, 
and can be used without further development. As it turns out, the 
developers of the macro processors which are in use at CSDL were greatly 
concerned with the portability of the macro processors themselves. 
They wrote the macro processors in such a way that it is easy to install 
and run them on different machines. 
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6.4 Justification 

This section briefly explains how assemblers and macro processors 
work in order to justify the above assertions concerning the practical- 
ity of developing a HOIL based on macro processors. 

6.4.1 Character String Mapping 

It is possible to regard the operation of all computer language 
processors as accepting an input character string and generating an 
output character string. This process is often referred to as "mapping". 
A compiler input string is the source program and the output string is 
the object code which runs in the computer. 

It is customary to,think of the source program in terms of indi- 
vidual language statements. It is possible instead to think of the 
program as one long input string which is divided into separate state- 
ments according to some convention, such as the end of a card. In PL/l, 
for example, the string form of the program is made explicit, because 
a special character is needed to end a statement. 

It is also possible to think of the object code as a character 
string. Computer memory can be subdivided into characters, and a pro- 
gram in core can be thought of as one long string of such characters. 
The most striking difference between source and object strings is that 
object code strings do not make sense to most human readers. It is 
interesting to note that the computer's string is usually much shorter 
than the human's. 

6.4.2 Assemblers 

The function of the assembler is to map a string which a human 
can read into a string which a computer can read. This mapping process 
is straightforward. Assemblers essentially process three kinds of data: 
labels, opcodes, and operands. Labels are used to refer to specific 
points in the program. In order to be able to use the labels, the 
assembler must first examine the program to learn where they are. As 
each label is found, it is put in the label table along with the current 
offset from the beginning of the program. This offset is the value of 
the label, and the label defining pass is normally referred to as PASSl. 
After defining the labels, the assembler makes PASSZ. This time, it 
looks up each opcode in a table, and learns the numerical opcode for it 
and the number of operands to expect. It then looks up the operands in 
the label table and determines the numberical value of each. Finally, 
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the assembler places the value of the opcode and the values of the 
operands in the output string. 

6.4.3 Macro PrOCeSSOrS 

A macro processor implements a somewhat more complex mapping 
function than the assembler. The number of opcodes in an assembler is 
usually defined in advance, and the table is built into the assembler. 
A macro processor, on the other hand, allows different sets of maps to 
be defined by the user. The definitions of these maps are called macros. 
The collection of macros defines the overall map from input string to 
output string. 

A macro is defined by first giving a sample of each recognizable 
input substring followed by the output substring to which it is to be 
mapped. The macro processor searches the input string for substrings 
for which a macro has been defined. Input substrings for which there 
is no match are added to the output string without change, while input 
substrings for which there is a match are replaced by the specified 
output substring. 

The process of generating the output substring in response to a 
specific input substring is somewhat complex. The macro definition not 
only includes characters which are to be added to the output string but 
instructions to the macro processor itself. These instructions may 
cause the macro processor to remove additional substrings from the in- 
put string and copy them into the output substring in specific places. 
For example, the assembly language statement for a subroutine call may 
be GOSUB followed by the name of the subroutine. The macro definition 
for a simple CALL macro which uses this instruction follows: 

MACRO 
CALL &PARAMETER 
GOSUB &PARAMETER 
MEND 

The MACRO and MEND statements delineate the beginning and end of 
the macro definition. The first line describes the input substring 
which is to be mapped to the output substring as the characters "CALL" 
followed by any parameter. This parameter is substituted into the 
output string whenever it is referenced. The second line tells the 
macro processor that the output substring to be associated with the in- 
put substring "CALL name" is generated by adding "GOSUB" to the output 

119 



substring followed by "name". Thus the string "CALL name" is replaced 
by the string "GOSUB name". Because CALL does not appear in the output 
string, the assembler does not find it, but encounters GOSUB instead. 

A common use of macro processors is to implement extended 
assembly language functions. A particular computer environment may have 
a standard set of instructions which are used to pass data between 
subroutines. It is tiresome to code this process repeatedly, and there 
is little point in debugging each subroutine calling sequence individual- 

ly- In this case, the CALL macro would map into the series of assembly 
language statements needed to pass arguments to the subroutine. This 
not only saves time and eliminates errors, but makes the program more 
readable. It is not necessary to scan all the statements in the 
calling sequence to realize that a subroutine is being called, because 
the CALL is easily identified. 

6.4.4 Interface Checking 

It is not possible to check interfaces automatically in most 
assembly language programs because the interface logic is obscured when 
individual assembly language statements are coded. When macros are 
used to implement interfaces, the interfaces are much easier for 
programmers and interface analyzers to find. Automatic interface 
checking and variable use verification are made possible by this enhanced 
program legibility. Because the macros for calling subroutines, 
accepting data from subroutines, and other interface functions are 
easily located, they can be checked for errors. In principle, the 
interface analyzer scans all the programs and checks to see if the 
interfaces are compatible. However, it is possible to implement the 
interface analyzer in a considerably more elegant manner, as explained 
below. 

Because the interfaces are specified in the control diagram, it 
is possible to define them to the macro processor as a special purpose 
macro. Thus, when the macro processor encounters an interface function 
macro, it not only generates the code to accomplish the interface 
function, but also checks the particular interface invocation against 
its list of interface definitions. Thus, interface validation is 
performed as each module is assembled. Alternatively, the interfaces 
to a given module can be defined before the module is coded. This 
allows the structure to be verified before all of the modules in it are 
developed. A "pseudo module" containing only interface specifications 
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can participate in the interface analysis, and the code can be filled 
in later. This allows some aspects of system integration to be 
completed before the modules are developed. 

6.4.5 Algebraic Expression Evaluation 

The mapping between CALL statements and assembly language state- 
ments to implement calling sequences is relatively straightforward. It 
is somewhat more complicated, but not excessively so, to examine 
algebraic expressions and generate code to implement them. The 
techniques for scanning a parenthesized expression are very well known, 
and require only a stack to hold temporary results. After development 
of the inteiface macros, the next step is to write the 11=11 macro, which 
generates code for arithmetic expressions. The "CALL" macro verifies 
that the program passing data and the program receiv'ing data agree on 
the definition of each datum, and the 11=11 macro makes sure that 
variables are used properly. 

As with the CALL macro, the 11=11 macro enhances the readability 
of the program. The algebraic expression may be understood at a glance, 
because understanding does not depend on the analysis of many assembly 
language statements. Furthermore, because the macro processor is made 
aware of what is actually being done to the variables, it verifies that 
the operations are appropriate. Because there are many algebraic 
expressions in flight code, this facility is extremely helpful to 
flight programmers. 

6.4.6 Generation of Control Functions - 

Once the burden of algebraic statements has been removed from 
the programmer, the major remaining burden is the development of control 
functions. Recent experience indicates that such statements as IF, 
THEN, ELSE, CASE, and DO are very useful and provide adequate program 
clarity. It is possible for a macro processor to generate code for 
such sequences. 

In explaining this process, it is helpful to re-examine the 
evaluation of parenthesized algebraic statements. A statement of the 
form 

2" (a + b) 
requires that the multiplication be delayed until evaluation of the 
expression inside the parentheses. The method for evaluating such 
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expressions involves the use of a stack to hold data describing 
deferred operations while more immediate ones are performed. In the 
example above, when the "(" is encountered, the "2" and the "*'I must be 
pushed on the stack. They are removed when the ")" is encountered. 

The process of unraveling a nest of IF's, THEN;s, DO's etc. is 
essentially similar, provided that the entire source program is regarded 
as a continuous string. The macro processing the string defining the 
algebraic expression above pushes the "2" and the "*" when it encounters 
the " ('I. The "(" signals that the preceding operation must be deferred. 
Similarly, the macro processor finding a "DO" statement after a "THEN" 
stores the "THEN" for processing after it finds a matching "END". The 
reason the "THEN" must be stored is similar to the reason why operations 
before a "(" must be stored. When the group of statements bracketed by 
"DO" and "END" is to be executed, there is no difficulty in passing 
control directly to the first statement of the "DO". When the statements 
must be bypassed, however, the code generated in response to the "THEN" 
must branch around the "DO" group. The conditional test generated by 
the "THEN" statement branches to a statement label located after the 
"END" if the test fails. Therefore, the macro processor must remember 
to generate an appropriate label when it locates the "END". 

The key point i.s that once the program is regarded as a string, 
it is possible to treat individual statements within it in the same way 
that individual variables are treated within an algebraic expression. 
This method of dividing the source code into small pieces closely 
resembles the process of breaking a system down into functions. The 
analysis of the source program consists of removing the next "thing" 
from the input string, and then chopping that "thing" into smaller and 
smaller "things" until an irreducible "thing" that can be processed is 
found. "DO" is the equivalent of "(" and causes items to be added to 
the stack. "END" is the equivalent of ")", and causes removal from 
the stack. Looked at in this way, the processing of nested DO's etc. 
reduces to the previously solved case of evaluating algebraic expres- 
sions. Just as a "(I' defers performance of an arithmetic operation, a 
"DO" defers assignment of a control label. Processing control state- 
ments requires additional "special characters" and they are handled 
in different ways, but this is a difference of degree rather than of 
kind. 

Thepoint of this argument is that macros can be defined to 
generate code required to implement IF, THEN, and DO functions. These 
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macros make it unnecessary for the assembly language programmers to 
generate individual assembly language statements to perform these 
functions, just as the CALL macro makes it unnecessary to write the code 
to pass parameters. This reduces the programming effort needed to 
implement a given set of software functions. Once these macros are 
implemented, programs written in the augmented assembly language look 
surprisingly like programs written in compiler languages. 

It must be noted that this does not imply a proposal to implement 
a specific cgmpiler language such as PL/l or a PL/l subset. Existing 
languages were not designed with EIOS structures in mind, and most allow 
the programmer to express such complicated constructs that compilation 
is difficult. The HOIL syntax to be developed restricts the use of 
keywords such as DO and THEN so that the macro processor can easily 
parse the program. Furthermore, the HOIL syntax is designed to 
illuminate the interface specifications for the benefit of the automated 
analyzers. This simplifies the programs for the reader as well as for 
the macro processor, and make it easier to learn to use the HOIL. 

6.5 Conclusion 

From the point of view of the user, the augmented assembler 
language at first sight looks like a compiler language. However, pro- 
grammers can always use assembly language code when necessary to perform 
functions which are not supported by the macros, although assembly code 
is not subject to automatic verification. This provides a great deal 
of flexibility in the use of the HOIL. The justification for assembler 
use can be made on a case-by-case basis, rather than condemning the 
entire software development process to the use of an assembler because 
occasional routines require it. Furthermore, if a programmer discovers 
a better code sequence than a macro generates, the macro can be changed 
to generate the more efficient code, so that all programs benefit, and 
macros can be written to perform specialized functions needed by the 
multiprocessor software. This further reduces the need for assembly 
language. 

The macros force interface functions and operations on variables 
to be specified in a highly visible manner. This makes the programs 
more readable, which cuts implementation and maintenance costs. The 
increased visibility also makes it possible to verify interfaces and 
the use of data in arithmetic expressions automatically, thus eliminat- 
ing the major cost in final system integration. Because it is not 
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possible to,verify pure assembly language statements automatically, the 
HOIL flags assembly statements so that the programmer can justify them 
to management. 

The development of the HOIL and the interface analyzer can 
proceed incrementally. If the initial interface functions are found to 
be inadequate for a particular application, more macros can be written 
to implement additional functions. This neither invalidates previous 
macros nor affects the analyzer's processing of previous functions. 

Developing systems according to the HOS axioms leads to lower 
life cycle costs. System integration costs less because interface 
errors are eliminated even before modules are coded. Maintenance is 
cheaper because the system is easier to understand and because the 
analyzers verify that changes affect only the modules which are changed. 
If module interfaces change, the analysis can be repeated to illuminate 
the side effects of the change. All of these facilities can be imple- 
mented using existing macro processors. Each macro written in develop- 
ing the HOIL can be individually tested and debugged. Therefore, the 
development cost of the HOIL can be measured in man-months rather than 
the usual man-years or man-millenia required for compiler development. 

6.6 Application to Software 

The fault tolerant flight computer system can be regarded as a 
series of environments which support increasingly complex software 
systems. The lowest level environment is provided by the system hard- 
ware itself. The hardware supports a number of microcoded functions 
which provide common facilities and are used by the rest of the soft- 
ware. The executive software controls task dispatching, resource 
allocation, and reconfiguration in response to faults. The executive 
supports the applications software, which is not affected by the fact 
that the flight computer is tolerant of hardware errors. Each level 
of software supports the adjacent level, and there are many tradeoffs 
between levels. For example, the more functions are implemented in 
microcode, the fewer instructions are needed to perform a given task, 
but the more microcode memory is required for each processor. One of 
the major advantages of the HOS approach is that the detailed tradeoff 
between the various levels of software can be made after the system is 
designed. This is because a given function is specified in the same 
way, no matter how it is implemented. Because interfaces between 
functions are specified using macros, functions may be moved from 
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software to microcode without affecting the programs which use the 
functions. The macros must be changed to generate different code, but 
the source program itself does not change. In order to illustrate the 
common specification of functions, the following example defines the 
HOS specification for the task scheduling portion of the multiprocessor 
executive and part of the reconfiguration routines. It is important to 
note that the functions are descr'ibed in the same way, no matter how 
they are implemented. 

6.6.1 Software Example 

The scheduling functions in the executive are collectively known 
as SYSPROM. The main purpose of SYSPROM is to ensure that a scheduled 
task is performed at the correct time or in response to the appropriate 
event. The overall scheduling function can be described as 

Task Done = f (Task Scheduled) 
Because a task is done only after it has completed its function, 

Task Done = g (Active Task) 

but it does not become active until it is ready, so 

Active Task = h (Ready Task) 

Likewise, a task must be scheduled before it can become ready, so 

Task Ready = j (Task Scheduled). 

These specifications are illustrated in Figure 6.1. Note that it 
is not necessary to define any of the functions f-j. The specification 
and the control structure are implementation independent. 

Interfaces should be checked at this point. Input can be traced 
down the tree, and output can be traced up. Intermediate outputs and 
inputs can be traced on the same level. Because the axioms have not 
been violated, Figure 6.1 represents a valid HOS control structure. 

Function j involves some kind of delay mechanism between the 
scheduling of a task and the time at which the taskis to be performed. 
Thus, j decomposes to 

Task Ready = k (Task Waiting) Task Waiting = 1 (Task Scheduled) 

This breakdown of j is shown in Figure 6.2. An alternate decom- 
position of 1 is shown in Figure 6;3, which is entirely equivalent to 
Figure 6.2. It is also possible to express all control structures as 
binary trees as in Figure 6.4. In general, the binary structure is much 
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TASK DONE = f(TASK SCHEDULED) 

j(TASK SCHEDULED) 

ACTIVE TASK = h(TASK READY) 

Fig. 6.1 First Level of Decomposition. 

TASK READY = j(TASK SCHEDULED) 

TASK READY = k(TASK WAITING) TASK WAITING = I (TASK SCHEDULED) 

Fig. 6.2 Second Level. 

TASK DONE = f(TASK SCHEDULED) 

TASK DONE = . ..Tg 

ACTIVE TASK = h(TA-SK READY) TASK WAITING = k(TAsK SCHEDULED) 

Fig. 6.3 Alternate Structure. 
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TASK DONE = f(TASK SCHEDULED) 

TASK DONE = a(TASK READY) TASK READ+-= b(TASK SCHEDULED) 

/\ 
TASK DONE = g(ACTIVE TASK) 

ACTIVE TASK = h(TASK READY) TASK WAITING = I (TASK SCHEDULED) 

Fig. 6.4 Binary Tree Structure. 

TASK READY = k(TASK WAITING) 

TASK READY=& 

TASK WAITING = I (TASK SCHEDULED) 

Fb ’ TASK WAITING = pITASK SCHEDULED 

TASK READY = n(TASK WAITING 
FOR TIME) 

TASK WAITING = q(TASK SCHEDULED 
FOR TIME) 

Fig. 6.5 Further Refinement. 
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clearer and lends itself to greater simplicity of design. The extra 
leyels Qf refinement do not requireadditionalwork during implementation 
because implementation is performed only at the lowest levels of the 
tree. 

Up to this point, the scheduler diagrammed in Figure 6.4 
schedules tasks only as a function of time. The specification is aug- 
mented as shown in Figure 6.5 to accommodate event scheduling as well. 
Examination of the total structure defined by Figures 6.4 and 6.5 shows 
that the input and output of the specified functions are consistent with 
the HOS axioms, and that the control structure is also consistent. 

The decomposition process is carried to more and more levels 
until the design reaches a point where the lowest level functions can 
be implemented easily. The cutoff point for decomposition may be 
determined by trial and error during implementation. If the implement- 
ation of a function proves to be excessively complex, another level of 
decomposition is called for. On the other hand, if implementation of a 
function is so simple that the interface statements occupy a major 
portion of the program, it is wise to implement directly at a higher 
level. 

It is important to note that identical considerations apply 
whether the system is implemented in hardware or in software or in 
some combinationofthe two. The lowest level functions may be imple- 
mented as software subroutines or hardware modules without affecting 
other modules. This allows many implementation decisions to be deferred 
until the design is complete, and ensures that options are kept open as 
long as possible. 

HOS Axiom Table 

This table states the HOS axioms in an informal manner. Deriva- 
tions of theorems based on the axioms are contained in [Sl. These 
theorems motivate the rules for function relationships which are incor- 
porated in the interface analyzer and specification analyzer. 
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Axioms, Formal Defintion 

1. A function controls the invocation of the set of valid 
functions on its immediate, and only its immediate, 
lower level. 

2. A function is responsible for its own and only its 
own output. 

3. A function controls the access rights to each set of 
variables in the output space for each immediate, and 
only immediate, lower level function. 

4. A function controls the access rights to each set of 
variables in the input space for each immediate, and 
only immediate, lower level function. Thus, a function 
cannot alter members of its own input set. 

5. A function controls the rejection of invalid elements 
of its own, and only its own, input set. 

6. A function controls the ordering of each tree for the 
immediate, and only the immediate, lower level. 
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CHAPTER 7 

SEMICONDUCTOR TECHNOLOGY 

The multiprocessor architecture has reached the degree of maturity 
where it becomes appropriate to begin generating specifications and 
design candidates for evaluation and production. The reduction of 
system failure rates through redundancy alone has a limited degree of 
feasibility. In order to reach the level of 10 -10 failures per flight 
hour it is necessary to address the many issues for which redundancy is 
only a partial solution or no solution at all. The preceding chapter 
dealt with one of these issues, i.e. software, for which redundancy 
contributes a high probability of correct execution, but can not other- 
wise contribute to correctness, In this chapter and the next, we 
consider two primary issues underlying failure rate reduction. The 
chapter following this one examines packaging constraints and some 
candidate approaches. Key issues are isolation, logistics, repair, 
integrity, interconnection reliability, and heat transfer. Heat 
transfer is possibly the most crucial of these issues, because the 
thermal density will inevitably be high, and the failure rate of semi- 
conductor components is critically sensitive to the ambient temperature. 

This chapter is concerned with several issues related to semi- 
conductor technology; the tradeoffs in design, the component reliability 
goals, and the acquisition of reliable components. 

7.1 Candidate Components 

To a large extent, the multiprocessor presupposes several charact- 
eristics of its semiconductor components. They must among other things 
be reliable, producible, available, economical, and efficient in terms 
of power and volume. The inherent incompatibility of many of these 
characteristics makes it exceedingly difficult to select among the 
available technologies and devices, none of which are ideal in all 
respects. 

130 



From a historic viewpoint, the use of massive redundancy in inte- 
grated systems has only been considered where the cost of hardware repli- 
cation has been small in comparison to project cost. The emergence of 
the LSI microprocessor has done much to foster consideration of a massive 
redundant architecture for commercial aircraft. It is natural, there- 
fore, to begin with the assumption that the LSI microprocessor is a 
necessary element of the multiprocessor; This assumption can be 
ch,allenged on grounds of speed, testability, and failure rate. The LSI 
processor devices are near today's limits of complexity, and as a 
result can &ffer from anomalous effects such as pattern sensitivities, 
which stem from their small and irregular geometries. They moreover are 
difficult to test, because relatively few of their internal signals are 
accessible. The faster bipolar microprocessors, to some extent, 
alleviate the problem, because they are partitioned onto a number of 
chips. Their failure rate remains an open question, however, until such 
time as their production volume becomes large enough to establish an 
assessment. The alternative approach is to use more chips in a more 
nearly conventional arrangement. This approach is limited by consider- 
ations of size, power, and cost. 

Memory accounts for a large fraction of the multiprocessor's 
circuitry. LSI memory elements are generally adequate in terms of 
speed, are moderately testable, and in some cases have proven to have 
low failure rates. They are therefore viable candidates for all of the 
memory functions: common memory, cache memory, and microprogram stores. 
The volatility of semiconductor read-write memory leaves some doubt as 
to their utility in common memory. Core memory is a potential competi- 
tor, but does not appear to be improving as fast as semiconductor 
memories in cost, density, and power consumption. Moreover, if core 
memory were used for instruction storage, the initialization of the 
computer after certain maintenance procedures would require external 
reloading. A wholly semiconductor common memory could use programmable 
read-only memory elements for instruction storage and read-write elements 
for data. When a permanent memory module fails, it could be backed up 
by a read-write memory spare, although it is conceivable that dedicated 
spare PROM memory modules might be included for critical permanent 
modules. 

Certain of the multiprocessor's circuits are repeated often 
enough that they might appropriately be produced as custom integrated 
circuits. The bus guardians, the bus interfaces, and the clock 
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receivers are good examples. An equally attractive approach is the use 
of hybrid sub-carriers. Both of these approaches are expensive 
initially with the potential of reducing the long-term total costs. 
Whether or not such implementations are made, the use of discrete 
transistors and diodes, and SSI and MS1 circuitry for certain functions 
is inevitable. The only question is how much. Again, power, volume, 
and standardization place limitations on the acceptability of SSI and 
MSI. 

In summary, then, it is anticipated that a variety of semicon- 
ductor components will be required, ranging from transistors to LSI 
elements. The tradeoffs that lead to selection will depend on time 
frame of procurement, procurement volume, computer performance 
parameters, and computer functional application. 

7.2 Reliability Goals 

In order to estimate the reliability requirements of the semi- 

conductor elements, we begin from the premise that the computer failure 
rate will be of the order of 10 -10 failures per hour. As a first esti- 
mate, we can refer to the Markov reliability model results described in 
Chapter 5. Table 5.3 lists baseline parameter values used for a 
representative calculation of failure rate, in which the basic module 
MTBF was taken to be lo4 hours. For a complement of 15 processor and 9 
memory modules, the computer failure rate was slightly over 10 -10 

per 
hour. A rough extrapolation to a somewhat larger computer (20 proces- 
sors, 20 memories) and a slightly lower computer failure rate leads to 
a nominal module MTBF of 3 x lo4 hours. The next step in the estimation 
process is to assume a certain number of semiconductor devices per 
module. In the absence of a firm design, we make the rather crude 
estimate that each module will require roughly two hundred semiconductor 
devices. If we attribute all failures to these devices, each device 
would require a failure rate of 0.017 per cent per thousand hours 
(1.7 x 10m7 per hour). In order to take into account the packaging and 
interconnection failure rate, we reduce the allocation to the semicon- 
ductor devices to 0.01 percent per thousand hours. This is a convenient 
number to deal with at this stage of the design, because it represents 
the low end of the range in which commercial production components 
usually are available after screening. 

In order to achieve the 0.01 percent per thousand hour failure 
rate over all components, special precautions will be necessary, 
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involving the selection and the acquisition of components. The 
requirement is clearly one that can be met. Military programs such as 
Poseidon and Trident have done so. Indeed, Minuteman required a rate 
one tenth as large, and Apollo achieved one twentieth. Moreover, the 
technology and management required to do it is widely known. On the 
other hand, commercial avionics equipment has a history of performing 
an order of magnitude or more worse than what we desire. How this 
situation comes about, and how it can be resolved is not totally clear, 
but some insight may be gained by a brief consideration of some of the 
relevant issues. 

7.3 Component Selection 

One of the keys to component reliability is the process of 
choosing the components to be used. If complete freedom of choice were 
available, it would be possible to obtain excellent components with a 
minimum of effort. In practice, however, strong pressures exist to 
choose components that are not readily procurable with low failure rates. 
LSI is an example of this, where the high component density available 
has advantages in all respects except, perhaps, reliability. Given 
that component selection will necessarily involve the choice of devices 
that are relatively new, or not produced in large quantity, or for some 
other reason are not easily qualified a few guidelines are applicable 
in making such choices. 

Table 7.1 indicates many of the failuremodes that have been 
observed in integrated circuits. The fact that some components are 
available with very low failure rates testifies to the ability in some 
cases to avoid or surmount these problems. One obvious guideline for 
component selection is to choose components related to those that have 
been successful, in terms of process, vendor, and/or procedures for 
screening and burn-in. 

Figure 7.1 shows a family tree of technologies, incomplete for 
lack of some of the newer developments. The figure helps to visualize 
the vast number of different processes used by various suppliers today. 
Each process has its own individual failure modes, each of which may 
require a different screening environment. The consequence of choosing 
components from among several of these technologies will be an 
escalation of the cost of procurement and reliability assurance. 

The choice of LSI components is particularly difficult, because 
many problems are exaggerated by the small pattern geometries. Small 
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TABLE 7.1 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
10. 
11. 
12. 
13. 

14. 

15. 

16. 

17. 

18. 

19. 
20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 
30. 

31. 

IC INTERNAL PROBLEMS DETECTED PRIOR TO PRODUCTION BUYS 

Poor metal adhesion to Si02 
Underbonding 
Overbonding 
Al rich, Au Al eutectic formation ("purple plague") 
Nicks and cuts in bonding wires 
"'Necking" at foot of ultrasonic or wedge bonds 
Critical angle of wire pull (ultrasonic bonds) 
Overly long bonding leads 
Leads shorting to edge of chip or package lid 
Burn out at scratches caused only by electrical testing 
Shorts by metal smearing 
Surface instabilities 
PNPN switching 
Chip cracking - pyroceram mount, eutetic mount 
Poor chip orientation 
Oversized bonds 
Pinholes in Si02 
Poor Si02 Dielectric strength 
Misplaced bonds 
Contamination in packages 
Al corrosion 
Thinning of Al at Si02 steps 
Al to Si contact resistance 
Lifted chip 
Scratches 
Secondary breakdown 
Interconnect layout - geometry 
"Purple plague" at Si02 steps - multimetal systems 
Non interchangeability of "identical" circuits 
"Disappearing" of aluminum - alloying, metal migration 
Steeper Si02 steps due to photo resist change 

134 



MINORITY CARRIER MAJORITY CARRIER 
DIFFUSION FIELD DRIFT 

B R MOS (MONOPOLAR) 

---r 

I 
I 

1 
PNP NPN 

N MOS - 

C MOS 

I 

1 

41 

I 

12L Au 
DOPED GATE 

DIEL, 

I 

GATE 
DIEL, 

GATE 
DIEL, 

"$ 
JON sbs 

IMPLANTA- 
TION 

t 

DIFFUSED D ELECTRIC 
t 

HYBRID 
JUNCTION GLASS) 
ISOLATION ISOLATION 

Fig. 7.1. Technology Family Tree. 



metallizations for interconnection and small spaces between intercon- 
nects enhance material migration through high current density and 
electric fields. Small windows in the thermally-grown oxide make 
etching more prone to defects, which can instill long-term failure modes. 
Surface instability is another problem related to the oxide in small 
geometry circuits. LSI also suffers, as mentioned previously, from test- 
ing problems. As a guideline for LSI device selection, one must try 
to avoid devices that have not matured to the point of large-scale 
production with relatively good yields. It is worth pointing out that 
where an LSI device replaces ten other devices, one can in principle 
tolerate ten times the failure rate. This is only true, however, for 
random failures. Many of the failure modes are generic, i.e. strongly 
correlated, which acts to negate the advantages of redundancy. This 
effectively means that unless LSI devices exhibit failure rates well 
below their functional share of the circuitry, they are apt to contrib- 
ute more than their share toward system failure. 

It is always beneficial to minimize the number of different 
components used. Wherever a single component can serve a multiplicity 
of functions, the degree of standardization is enhanced, and the pro- 
curement volume of the part is increased, multiplied by the number of 
computers times the number of like modules in each computer. This 
could mean tens of thousands for each instance. 

As a final guideline for component selection, we mention once 
again the issue of temperature. Figure 7.2 illustrates the dependence 
of component life on component temperature. For different technologies 
and circuits, the curves are shifted, but the slope remains fairly 
constant. A difference of a few tens of degrees in temperature produces 
an order of magnitude difference in failure rate. Aside from motivating 
a conservative thermal design, these curves also provide strong 
motivation for minimizing power dissipation of components. This factor 
tends to favor the newer technologies over the better-established ones, 
contrary to other guidelines. The resulting dilemma is resolved in 
this case by making strong concessions in the thermal design of the 
packages rather than relying on low-dissipation components. 

7.4 Reliability Assurance 

Component reliability requires a dynamic life cycle rather than 
just a single initial specification. Inadvertent changes in production 
processes can introduce new failure modes, detectable only by incoming 
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insepction and test, or by the analysis of field failures. Timely 
detection and correcting action is crucial in order to minimize the 
situation of having many devices with generic flaws in the field. The 
magnitude of the detection problem can be seen by considering the length 
of time required to obtain 90 per cent confidence of the 0.01 percent 
per thousand hour failure rate in a sample of a thousand devices. There 
must be no failures in 2.7 years, there may be one in 4.5 years, and 
four in 9.3 years. The paucity of allowable failures requires stringent 
examination of each failed device to determine the failure mode and 
its potential for screening. 

The methodologies of reliability assurance are numerous. No one 
procedure is ever adequate, owing to the elusive and nearly invisible 
nature of the problem. Table 7.2 is a listing of several methods that 
have been used by various programs, often at substantial expense, and 
with varying degrees of success. Commercial fabrication facilities 
have been able to adapt some aspects of these methods to enhance relia- 
bility while keeping costs low. In some cases it is less expensive 
overall to use such procedures than not to do so. Certainly, a relia- 
bility assurance program can have a cost that is unreasonably high. 
It has also been shown, however, that programs of moderate cost have 
produced excellent results. Intermsof life cycle costs, where main- 
tenance, logistics, and down time are taken into account, a reliability 
assurance program of reasonable size can easily be justified. The 
problem is, how to make it effective. 

Success in reliability assurance correlates well with motivation 
and determination. This follows from the fact that so many potential 
problems exist, any one of which can result in high failure rates. 
Every link in the chain must constantly be kept strong. The relation- 
ship between airlines and the computer manufacturer can have a favorable 
impact on the success of the program. A commercial airline application 
is an environment wherein the computer manufacturer can be involved in 
the complete life cycle of the equipment. Equipment lifetime 
warranties are not new to this industry. In some cases, manufacturers 
guarantee to provide a given number of operational pieces of equipment 
to an airline for a fixed fee, and handle the repairs and logistics. 
An extension of this policy into areas of liability, reliability, and 
cost of ownership would probably be required to obtain the system goal 
of one failure in 10 10 hours. 
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1. 

2. 

3; 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

TABLE 7.2 

METHODS OF RELIABILITY ASSURANCE 

AC and DC testing (vendor specs). 

-Acceptable Quality Level (AQL) 
Sampling procedures and tables MIL Std 105D. 

Use of MIL standard parts. 
Test method for semiconductors MIL Std 750A. 
TeSt method and procedures for microelectronics 
MIL Std 883. 

Qualified suppliers list. 

Qualification testing 
a. Small sample step stressing 
b. Life testing 
C. Screen and burn-in 

Predicted life from accelerated stress (Bell Laboratories). 

Lot rejection. 

Captive line. 

In-house resident. 

Fixed processes. 
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7.5 Recommendation 

The failure rate goal of 0.01 per cent per thousand hours for a 
commercial application can be reached, and has been surpassed in 
several military and space programs. Nevertheless, the requirement is 
stringent, and will require out-of-the-ordinary processing, The 
production cost will be higher than usual, but the increased cost will 
be counterbalanced by reducedmaintenanceand down-time costs. 

Production startup costs will be high, as solid state component 
vendors are reluctant to change any of their methods of operation, They 
do adapt in some cases, and with large production purchases by a 
customer who understands solid state processing technology and failure 
modes, they can anticipate returns in the form of increased production 
yields, The initial costs of special handling, extra documentation, 
test equipment, burn-in facilities, failure analysis, and engineering 
evaluation will be considerable. This is one of the areas where 
component standardization is highly advantageous, as it distributes 
these costs over many production units. 

In the absence of a more specific design, it is not possible to 
make a detailed recommendation for a reliability assurance program. 
Some requirements are functions of technology and the environments of 
manufacturing and purchasing, and must be dealt with at a later time. 
It is possible, however, to make some specific observations. We have 
stated before that the desired component failure rate can only be 
achieved by a dynamic approach in which problems are continuously 
detected and solved, The reliability assurance program should begin 
two years before production begins, and should continue for the 
computer's production life cycle. The following paragraphs roughly 
outline the elements of such a program. 

First, a program of engineering evaluation and qualification 
testing will be required. Failure modes must be determined, as well as 
the failure rate for each modes. Environmental tests to trigger each 
mode must be established, and the level of screenability determined. 

From the engineering data generated, screen and burn-in pro-l 
cedures must be designed to monitor and identify component problems. 
The static and dynamic tests, the cost trade-off between component 
screen and burn-in vs. module burn-in, and component procurement 
specifications can then be generated. 
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Module burn-in for the fault-tolerant computer can be readily 
performed because of the many fault detection techniques built into the 
system. The burn-in rack would simply be a large computer motherboard. 
The biggest cost of module burn-in would be in the cost of the modules 
themselves. Early failures not picked up at component screen and burn- 
in could be detected at module burn-in. The degree to which one depends 
on an extensive burn-in depends on the failure rate of the procured 
components and the cost trade off. 

Failure analysis on field failures and module.burn-in failures 
are required. After the production process is established, this data 
can be used for corrective action by the vendor and an indication of 
failure rate trends. This is a long time-constant detection method, but 
it is capable of indicating minute changes in failure rate. A type of 
Qualified Suppliers List is required. This, coupled with the component 
specification requirement, will help to generate the procurement plan. 
Data from Failure Analysis will update the Suppliers List. 

Lot jeopardy or lot rejection, such as employed on the Apollo 
program, is not required. Some type of in-line quality detection method 
is necessary, however, to prevent many modules from being built with a 
bad lot of parts. Screen and burn-in plus module burn-in can detect 
these problems, but detection at the module burn-in level is costly 
because of rework or scrapping of modules. 
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CHAPTER 8 

PACKAGING CONSIDERATIONS 

This chapter covers the packaging of the fault-tolerant computer 
from a general packaging philosophy through to brassboard and production 
packaging schemes. The section on packaging philosophy promotes the 
idea of physical integration, where an attempt is madetomake packaging 
elements serve 2 or 3 of the basic packaging functions, interconnection, 
thermal control, and physical integrity, This is followed by a state- 
ment of the fault-tolerant computer packaging problem in the form of the 
computer architecture to be packaged and the operational and environ- 
mental constraints which must be considered. A general discussion of 
some packaging technologies is then followed by specific concepts for 
the brassboard and production computer packaging. 

The brassboard packaging is done using mature technologies. In 
fact, there is no reason the ultimate reliability goal for the computer 
cannot be achieved using the design proposed for the brassboard. The 
production model packaging scheme proposed for a build in the 1980-85 
time frame could easily be built now, but with some lack of confidence 
in reliability. By 1980-85 the technologies used in this design will 
have achieved a maturity which will improve our confidence in their 
reliability. Also, we might expect by then a small saving in cost, as 
well as the large saving in volume and weight this design will provide. 

8.1 Packaging Philosophy 

The term packaging can be applied to a wide range of activities. 
It can be used for putting resistors in a carton for shipping, for 
designing a TO-5 can and putting a transistor chip in it for physical 
protection, or for the physical design and assembly of a complete 
electronic system. 

In order to focus on the emphasis required for the physical design 
of systems incorporating components such.as LSI and hybrid circuits the 
term "physical integration" will be used. The term alludes not only to 
integration in a material sense, but also to integration based on 
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physical laws applied to the system as a whole. For example, the 
designer of a system connector must consider not only such things as 
connector size, resistance, and reliability, but also whether it will 
contribute to system heat transfer and structural integrity. 

The human nervous system is a good example of a physically well 
integrated system. Of course economics and repairability place limits 
on building such a system even if we had the technology. Physical 
integration will require that system designers apply their knowledge of 
logic, device physics, materials, heat transfer, high-speed data 
transmissidn, electromagnetic interference, reliability, repairability, 
and testing concepts. All these factors must be considered and com- 
promises must be made to achieve future system goals. 

The complexity of these tradeoffs is more evident when we realize 
that a study of heat transfer alone must consider thermal properties of 
materials, thermal interfaces at mechanical and electrical joints, the 
distribution of thermal sources and sinks, device dissipation, device 
temperature rise versus reliability, and cooling methods available. 

We may gain some insight into what can be done to physically 
integrate a system by examining LSI itself to see what makes it so 
attractive. The immediate and somewhat superficial answer is because 
many packages are replaced by one package, many interconnections are 
eliminated, and many of those connections that remain are on the chip 
itself, which reduces cost and increases reliability. Perhaps more 
basic to the success of LSI, and indeed the reason for its name, is the 
fact that all parts of the LSI chip serve multiple basic functions. 
The components and interconnections in a LSI structure compose only a 
small part of the volume of a chip. However, the remaining part of the 
chip contributes to its overall strength and thermal dissipation, the 
prime functions of the larger part of the otherwise unused silicon. We 
might conclude that the design of parts of a system to serve two or more 
basic functions is a desirable guide in working toward a "physically 
integrated" system. 

Physical design, in the most basic terms, consists of designing 
for the electrical interconnection of components, extraction of heat, 
and mechanical integrity in a specified environment. One must bear in 
mind at all times the tradeoffs between these areas while evolving a 
design. System logic designers must consult with the people responsi- 
ble for the physical design in the conceptual phase to achieve the goals 
of physical integration. A good system design can only be achieved if 
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good compromises are made in the areas of system electrical design, and 
system physical design. 

Interconnections are best when eliminated. If this is not pos- 
sible, permanent interconnections are preferred to demountable ones. 
Unfortunately, the need for repair, modification, economy, and electrical 
test preclude this ideal situation. As a compromise situation we must 
resort to partitioning a piece of equipment or system into manageable 
portions which may be interconnected by demountable connections. Good 
partitioning requires the cooperation of the electrical, LSI, and physical 
designer. For example, increasing the number of gates in a LSI chip may 
reduce the lead/gate ratio. However, the number of lead connections 
which can be put on a chip is a function of area. Of course there are, 
and always will be, technology limits on how big a chip can be made and 
packaged. These variables leave considerable room for tradeoffs. As 
another example of an area for designer compromise, it might be desirable 
to use serial instead of parallel transmission to reduce interconnections. 
Such a change may or may not be compatible with system speed requirements. 

When analyzing a system from a physical integration .point of view 
it is helpful to consider the levels of interconnection in the system 
and the method of connection. A complex system may have 4 (or possibly 
more) levels as listed below: 

Level 1 - can be represented by interconnections in a hybrid 
circuit. Interconnections are usually non-repairable. A 
failure in a component would require replacement of this level 
as the unit is not repairable. 

Level 2 - can be represented by a multilayer wiring board, or 
cordwood welded matrix interconnections. Connections are 
semipermanent. Repairs can be made at the fabrication 
facility. 

Level 3 - can be represented by pin connectors with a wire- 
wrap field interconnection. Connectors are demountable and 
therefore a replacement module can easily be installed. 

Level 4 - can be represented by a cable and connectors inter- 
connecting subsystems. These connections are demountable 
and therefore subsystems can be replaced easily. 

These defined levels of interconnection aid in dividing the 
physical integration problem into portions of manageable size at the 
hazard of neglecting the effect that a decision made in one area will 
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have in the other areas. Keeping this hazard in mind, the physical 
designer must consider for each level the itemslistedbelow: 

1. Heat transfer within each level and to the next-level. 

2. Type of connection or connector. 

3. Type of interwiring. 

4. Partitioning for a minimum number of connections, ease 
of testing, and ease and cost of repair. 

5. Ability to stand environmental stresses. 

6. Reliability. 

7. Volume. 

8. Weight. 

9. cost. 

The environmental conditions under which a system may be required 
to operate vary over a wide range. Ground-based computers may be in 
environmentally controlled rooms isolated from all but the mildest 
vibrations. Spaceborne computers may be required to operate reliably 
under severe shock, vibration, and temperature excursion conditions in 
a vacuum as well as under atmospheric conditions. Care is required in 
the selection of materials for matched thermal expansion and, if this is 
not possible, methods of stress relief must be built in. Substantial 
amounts of material may have to be added for structural rigidity. 
Everything must be held firmly in place with screws, cement, potting, 
etc. A physical designer should repeatedly ask himself whether the 
material added for mechanical integrity can also be made to act effec- 
tively to help solve the heat transfer problem and/or double as part of 
a connector structure. 

The heat packing densities possible with LSI imply a significant 
increase in heat dissipation per unit volume despite the fact that the 
power per function is reduced. The cooling technique for a particular 
system must take into account coolants already available. For example, 
cooling air might easily be bled from a jet-engine compressor. One 
should design for a minimum weight of the electronics and cooling 
system taken as a whole, particularly for spaceborne and airborne 
systems. The ability of the cooling system to remove large amounts of 
heat from small volumes is important to prevent hot spots. For high 
power density equipment, cooling by liquid flow or cooling by boiling 
might be considered. Thermoelectric cooling and heat pipes should be 
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considered for hot-spot control. It is of course advantageous if 
material added for thermal control doubles either as a structural member 
or as part of a connector. 

8.1.1 Assumed Computer Architecture for Packaging 

The object of this section is to set forth in condensed form the 
architectural features which are of importance in developing a packaging 
concept for the computer. 

We have assumed that 28 VDC power is available from 5 separate 
sources. For example for an LlOll these could be the alternators on 3 
engines, the auxiliary power unit, and the battery bank. Because the 
computer may never be without power during flight, it may be necessary 
to add a dedicated battery system to be used during short time power 
outages. This is already being done for navigation systems such as the 
carousel. The need for such a dedicated battery can only be assessed 
for a particular application and we have assumed for simplicity that it 
is not needed. The separate power sources are brought to each module 
where the necessary isolation, conditioning, and overvoltage protection 
is provided. The total power budget of 28 VDC is 1400 watts. This 
conservative number reflects the possibility that LSI utilization may 
be limited by considera.tions of producibility and testability. 

The computer is made up of processor modules, memory modules, 
clock and I/O access modules, and a suitable bus structure to inter- 
connect the modules. Table 8.1 lists the modules and buses required. 
More detail about the number of bus conductors is given in Table 8.2. 
Here we have assumed that each connector will provide a pair of pins to 
make contact to each bus. Figures 2.2. and 2.3 in Chapter 2 schemat- 
ically show how the various modules and buses are connected in the 
computer. The bus guardian units and isolation gates,depicted 
separately, will actually be in the modules they are associated with. 

The architecture implies that one failure must not be permitted 
to cause another failure. For example a short circuit in one module 
must not spatter metal on the active section of another module. In 
addition the system cannot tolerate a serious rash of generic failures 
in either the electronic components or packaging components. Generic 
failures are caused by a built in wearout mechanism in a given part 
type which causes all these parts to tend to fail after a given amount 
of usage rather than randomly. 
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TABLE 8.1 

BASELINE COMPUTER ARCHITECTURE 

MODULES 

20 Processors Each module contains 2 bus guardian units, 
20 Memories bus isolation gates, and its own power 
6 Clock & I/O Access supply. 

MODULE INTERWIRING 

5 I/O Buses 
5 Memory Buses 
5 Power Buses 
6 Clock Buses 
6 I/O Net Buses 

TABLE 8.2 

LIST OF MOTHERBOARD WIRING 

CLASSIFICATION 

?OWER (28 VDC) 
JLOCK 
I/O BUS 
WMORY BUS 
I/O NET 

TOTAL 

NO. OF CONDUCTORS 

10 
12 + GND PLANE 
15 + GND PLANE 
15 + GND PLANE 
12 PAIRS 

NO OF PIN PAIRS 

10 
13 
16 
16 
24 

79 
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8.1.2 Environmental Constraints 

The most serious environmental constraint is thermal. ARINC 
Report Number 414 suggests a storage range of -65OC to +71°C and a 
normal operational range of -40°C to +55OC. This is quite a large 
temperature range for high reliability electronics. 

We have assumed that cooling will be done through the medium of 
ambient air and that the air contains too many contaminants to be 
passed directly over the electronics. The availability of a vacuum 
plenum for pulling cabin air across the heat exchange surfaces in the 
equipment will not preclude the necessity for fans in the equipment in 
the event the vacuum system fails. The computer will require consider- 
ably more than the recommended 6.8 - 13.6 Kgms of cooling air per hour 
per 100 watts dissipated. The 26'C air temperature rise with a 13.6 
Kgms./hour flow is much too high. 

Atmospheric pressure ranges from 305 meters below sea level to 
13700metersabove sea level must be withstood by the computer. It must 
also withstand a decompression from 13,700 to 2,130 meters. 

The computer must withstand vibration, landing, shocks, and 
handling shocks. Adequate shielding to protect against EMI, and in 
particular EM1 generated by lightning strikes, must be provided. Much 
of the detailed information on environmental constraints can be found 
in ARINC Report No. 414. 

8.1.3 Operational Constraints 

We have assumed that ATR packaging, although desirable, will 
only be used if it can be shown that such packaging does not measurably 
influence the computer's reliability. It is particularly important 
that the fault-tolerant computer reliability not be compromised by 
efforts to reduce or by efforts to design it into an unfavorable form 
factor. This concept is not new in aircraft practice, as we see from 
ARINC 414 where it says, "The airlines place great emphasis upon 
reliability and maintainability with only secondary interest in size 
and weight." A severe failure budget, such as 1 failure in 10 10 

operational hours for the computer, allows little room for compromise. 

Maintainance should normally be done on the regular maintainance 
cycle. Since the computer can pinpoint its own failures to the level 
of a processor memory, clock, I/O access unit, or bus, it seems reason- 
able that the modularity of the computer conforms to these functional 
blocks as much as is practical. Maintainance would then consist of 

148 



pulling the failed module and replacing it. The length of operation 
between scheduled maintenance stops is one of the determinants in fixing 
the number of spare modules which must be built into the computer. 

8.1.4 Aircraft Specifications 

Various ARINC specifications and reports were drawn upon in study- 
ing the airborne fault-tolerant computer packaging problem. It is 
anticipated that the guidance of these and similar documents would be 
followed except where a well defined advantage will result from 
taking another direction. The documents which significantly contributed 
to this report include: 

"Air..Transport Equipment Cases and Racking", ARINC SPEC 404. 

"Guidance for Designers of Airborne Electronic Equipment," 
ARINC Report 403. 

"General Guidance for Equipment and Installation 
Designers," ARINC Report 414. 

"Guidance for Designers of Aircraft Electronics 
Installations," ARINC Report 306. 

"Guidance for Aircraft Electrical Power Utilization 
and Transient Protection," ARINC Report 413. 

8.1.5 Packaging Technologies 

It is not possible in a few pages to even list, much less fully 
discuss various packaging technologies which may be applicable to 
fault-tolerant computer packaging. However, it is felt that a limited 
discussion which covers technologies we have selected for use in both 
the brassboard and production designs as well as some we considered 
and rejected, will give some insight into the selection process. 

Starting at the lowest level of interconnection in the system 
it is logical to first consider component packages. Integrated 
circuits are generally available in two package styles, flat packs and 
dual-in-line (DIP) packages. Flat packs are substantially smaller than 
DIPS and more easily removed for repairs. However, they are more 
expensive, less available, and not adaptable to wave soldering. Both 
package types can be of either hermetic or non-hermetic construction. 
Although recent tests have demonstrated the high reliability of some 
non-hermetic packages when used with the right semiconductor 
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metalization and passivation systems, the hermetic package will still 
offer a reliability edge for many more years. Hybrid circuits can also 
be made in DIP or flatpack form. Because one hybrid circuit contains a 
considerable amount of electronics a high number of I/O leads are neces- 
sary. The flatpack is more often used because of closer lead spacing 

Q.27 vs 2.54mm) and the greater ease of putting leads on 4 sides of a 
flatpack. Many passive components, lower power resistors, small 
capacitors, and small inductors, can also be put into the DIP and flat- 
pack package styles. For the brassboard computer the DIP package has 
been selected. For the production model which would be built in the 
1980-85 time frame we believe hybrid circuit technology can be gain- 
fully used. The flatpack will be used for packaging these hybrids. 

Hybrid circuit technology provides a means of interconnecting 
many components in a small space and then protecting them in a common 
package. Many advantages can accrue. There are fewer connections in 
the system, and the system is smaller. Smaller size implies lower 
weight, higher speed, and lower power. The materials and processes 
used in hybrids are far from standardized today. Of particular 
importance are differences in semiconductor bonding. Connections can 
be made using gold or aluminum wires and thermocompression or ultra- 
sonic bonding. IBM has standardized on a flip chip solder collapse 
bonding technique where the chips are specially made with solder bumps 
at the bonding pads and the chips are protected by a glass coating. 
Bell Telephone uses a gold beam leaded semiconductor chip which is 
protected with silicon nitride. The chip is bonded by a thermocompres- 
sion process. Neither the IBM or BTL processes have been widely used 
outside these companies and procuringaline of chips which have been 
reliably processed in either format is not presently possible. Many 
other semiconductor attachment processes have been tried over the past 
fifteen years and all but one have remained inrelativeobscurity. That 
one is the so called film bonding or tape automated bonding. In this 
process the chip is prepared with bumps on the pad areas. A reel of 
plastic film with sprocket holes in it carries sets of copper fingers 
cantilevered over cavities in the film. A set of fingers is gang 
bonded to the bumped chip. The next step is to cut the chip with 
fingers free from the film and gang bond it into a package or hybrid 
circuit. The keys to the success of the process are the ease of 
handling and operating on chips in the reel format and the gang bonding. 
This process is being used by several vendors for DIP packaging and is 
beginning to find its way into hybrid circuit manufacture. 
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The base of the hybrid circuit consists of a substrate which 
supports a w'iring pattern. To this wiring pattern active and passive 
components can be individually attached. Also it is possible to 
deposit, via batch processors, resistor, capacitor, and inductor 
elements. The processes for depositing materials, pattern formation, 
and component adjust are legion. A few of the most important aspects 
are touched on here. 

Wiring patterns can be made in multilayer format by two primary 
methods. One starts with a tape on theorderof .25mm thick made from 
ground cera*mic and plastic. Holes are punched in the tape at appropriate 
places and are filled with a metal powder in an organic binder. A 
pattern is also silk screened on the tape using the same metal - organic 
mixtures. These tapes are then accurately stacked, pressed together 
and then fired until the ceramic and metal sinters into a solid block. 
The result is a multilayer wiring structure in a block of ceramic. 
A second method starts with a fixed ceramic substrate. Alternate layers 
of metal wiring patterns and dielectric are screened and fixed to again 
form a multilayer wiring structure. 

Resistors can be made by silk screening special glass and metal, 
or glass and semiconductor formulations at appropriate gaps in the 
wiring pattern and firing. Capacitors and inductors can be made using 
the fired conductor material in conjunction with screenable and fireable 
high dielectric constant and high magnetic permeability materials 
respectively. Silk screening is a thick film process. 

Thin film processes such as vacuum evaporation and sputtering 
can be used to deposit conductor,resistor, and insulator materials on 
ceramic substrates. Photolithographic processes can be used to form 
these materials into patterns to make circuits. 

The addition of semiconductor components and discrete passive 
components to structures made in the aforementioned ways completes the 
hybrid circuit. 

Any product which is made in so many different ways must have 
some decisively good features. Our problem is to select materials and 
processes which best lend themselves to control, and to find vendors 
who are capable and willing to exert the degree of control necessary 
for the fault-tolerant computer application. 
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Individual components and hybrid and LSI circuits must be inter- 
connected in the system to form modules. Multilayer ceramic wiring 
boards made as previously outlined can fulfill this function if the 
board area required is not too large, say under 160 cm2. 
Printed circuit boards made using epoxy glass sheets with copper lami- 
nated to one or both sides offer an excellent alternative for larger 
area boards. According to one recent study these boards become more 
economical on an area basis up to the 1300 to 2000 cm2 
range. Since most circuits cannot be laid out without extensive use of 
crossovers a 2 sided board becomes necessary when interconnecting many- 
leaded components, The most reliable method of electrically connecting 
the wiring paths on one side to the paths on the other is through the 
use of plated through holes. Additional wiring layers may be required 
in the board for 2 primary reasons. It may be necessary to provide 
isolation or controlled impedance by the use of ground planes. Also 
the required board area can be reduced by about a factor of 2 in going 
from a 2-layer board to a 6Tlayer board. 

Interconnections at the module level and mother board level might 
be provided by two ,other technologies. Wire wrap, where a solid wire 
is tightly wrapped around a square post to form a gas tight point has 
been shown to be extremely reliable in the telephone system. Changes 
can easily be incorporated in wire-wrap interconnections. Perhaps the 
single largest drawback is the volume required. Stitch welded wire is 
less space-consuming than wire wrap, but is also more difficult to change 
and* does not have the long history of reliability that wire wrap has. 
Connections are made by pressing a teflon coated nickel wire against 
a stainless steel pin with enough force to break through the teflon. 
The welder is then fired to make a weld joint. 

When selecting module connectors and computer I/O connectors, a 
myriad of choices is available. There are tradeoffs to be made in the 
amount and type of plating or inlay to be used. Wear must be factored 
in. Wear increases with mating force, but adequate mating forces are 
required for reliable connections, Zero insertion force connectors are 
connectors which are mated without having the contacts touch. One of 
the sets of contacts is moved, using a mechanical actuator build into 
the connector, to touch the other set of contacts. This type of 
connector offers high contact forces with a minimum of "wiping" action 
and therefore a minimum of wear, however the need for their use in this 
application is not anticipated. Perhaps the most important point is 
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that the connectors must be protected from contamination and mechanical 
damage when unmated. 

Control of materials and processes used in the fabrication of 
packaging components and in the assembly of the finished equipment 
requires a substantial effort. Processes must be mature and well docu- 
mented. For high reliability packaging nothing must be left to chance, 
there must be no ambiguities in specifications, and as much operator 
judgement as possible must be removed from the process. There must be 
constant vigilance that specifications are followed, and the end products 
must be inspected and tested to insure that the product continues to 
meet specified standards. 

8.2 Packaging the Fault-Tolerant Computer 

The two overriding concerns for designing any piece of equipment 
are: one, will it do the job it is supposed to, and two, can it be done 
in an economical manner. For the fault-tolerant computer we must first 
concern ourselves with meeting the reliability goal. Concerns with 
size, weight, and the economics of a production model will be brought 
to the foreground upon successful demonstration of the brassboard. 

The following sections outline packaging concepts for both a 
brassboard computer to be flown about 1980 and a production computer 
for 1985 flight. The brassboard packaging makes use of well-known 
technologies with a proven capability in high reliability systems. 
With proper production controls we believe this design could be built 
in an economical manner to achieve the 10 10 hour reliability goal. The 
brassboard is large and heavy (about 227 Kgms. ). Although the technol- 
ogy presently exists to reduce the size and weight by a factor of 10, 
we believe it is not now mature enough to be used for a 1980 flight. 
We are however, predicting that this size and weight saving can 
reliably be made in the production model to follow. It should also be 
noted that a considerable saving in weight is made if the brassboard 
computer uses substantially fewer than this baseline number of modules. 

We have assumed that the computer will make use of the air- 
conditioned equipment-bay air for'cooling. We have also assumed that 
should the bay become extremely hot or cold during ground parking the 
computer wili only be turned on after the bay is conditioned to a 
reasonable temperature range, for example 0 to 50°C. 
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The demonstration of potential reliability in the brassboard 
model is the important goal at this time. Technology cost tradeoffs are 
only significant if done a short time before the production design and 
based on costs and technologies as they exist then. Cost analysis must 
also consider such things as repair philosophy, operational savings 
resulting from weight reduction , and the very difficult question of 
cost/reliability tradeoffs. 

8 (2 .l Brassb0.ar.d Packaging Design 

Ambient avionics compartment air is to be used for cooling the 
computer. Since wide temperature extremes can be encountered when a 
plane is parked unpowered in-Arabia (+71°C) or Alaska (-65OC) we have 
assumed that the avionics compartment will be conditioned in the range 
of 0 to 50°C before the computer is turned on. 

The power dissipation of the brassboard multiprocessor is esti- 
mated at 1400 watts. If we assume the air temperature rise of the 
cooling air is to be limited to 5.6OC then 12.6 m3/mm of airraxatbe sup 
plied at one atmosphere pressure. The fans used.can be designed to 
increase their speed at cabin pressures below one atmosphere so the 
weight of air delivered per unit time remains about constant. Of course 
this air must also cool the fan. This is significant as about35.3 watts/ 
m3/mm required which amounts to 445 watts additional dissipation. It 
should be pointed out that ARINC prefers that forced air not be used. 
In our opinion, however, the advantages out weight the disadvantages. 

Cooling would be most efficient if the air were drawn directly 
over the component to be cooled, Such cooling does cause a buildup of 
dust on the components with time, even when the air is filtered. There 
is also the remote possibility that water or other fluid could come in 
contact with the electronics if the cooling system were designed this 
way. The next option is to case each module and conduct heat from the 
components to the case where it is subsequently removed by convection. 
Although this approach does add the conduction AT to the component 
temperature, it is felt to be the better choice for this design. The 
cases will not be hermetic. They will be rugged enough to withstand 
decompression should it occur. Of course pains will be taken to 
reduce the conduction AT by providing efficient thermal paths from 
the components to the case, 
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With a 6.35 mm spacing between modules, the convection coef- 
ficient for 'laminar flow will be about 19.4 watt/cm2. With about 13 

2 cm of convection area (with no attempt to increase the area with fins 
or corrugations) the temperature difference between the convective 
surface and the air is 5.6OC. If fan power is included, the worst case 
AT between module wall temperature and inlet temperature will be 12.8OC. 
For a 24 pin DIP package the thermalresistancebetween the package and 
convective surface will be approximately 16.T°C/watt using the construction 
set forth in the Module Design section. Therefore l/2 watt 24 lead 
packages will operate approximately 22.2OC above intake cooling air 
temperature. 

We have assumed that a bank of 10 fans, each with 10 cfm capacity, 
will be arranged to feed a single plenum and filter arrangement for the 
computer. The fans will be fitted with flapper valves to prevent air 
from blowing back through the fan when it is off. The fans will be 
arranged in groups of two. Each group will be fed by 5 diode isolated 
power lines and one fan will run while the second fan is held as backup 
in case the first fails. The computer will control the switching of 
fans. With the ambient temperature around 21.1°C the computer should 
operate without excessive overstress on as few as two fans. Expected 
fan life can range from 2000 hours to 25,000 hours depending on fan 
quality. Of course the more reliable models would be selected for this 
application. 

It is recommended that a temperature monitor be placed in each 
module. This monitor can warn of a single module thermal problem as 
well as signalling a problem caused by fan failures, dirty filter, 
high avionics compartment temperature, or a combination of these 
conditions. 

The concept of making each processor, memory, and clock a single 
module arises from the fact that these are the smallest entities to 
which the system can isolate faults. It therefore seeems desirable to 
correct any detected failure by replacing, in a single package, the 
electronics containing that failure. It is also desirable to have the 
module protected physically from damage inside and outside the multi- 
processor assembly. For example, a failure on one module, such as a 
short circuit, must not spatter conductive material on the active 
section of another module, as propagated failures must be rigidly 
guarded against in this architecture. When the module is removed from 
the multiprocessor assembly, it is important that the electronics be 
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protected against handling damage and contamination. 

The added material to protect the module does raise some design 
problems. The primary problem is designing for a reasonable thermal 
drop between the components and the outside convective surface. This 
would tend to push the design to a thin planar module to reduce the 
length of the conductive paths. Other considerations push in this 
direction also. A different form factor resulting in a thicker module 
would dictate the interconnection of two or more planar structures in- 
side the module. Such an assembly would likely prove more difficult 
to repair than a single planar structure, and also would be less 
reliable. An external consideration that makes the thin module 
preferable is the interconnecting bus design for the modules. The 
easiest bus design is simply a collection of straight bus bars. Thick 
modules would necessarily make the bus longer, so long in fact that the 
bus would have to be bent to make the multiprocessor in some reasonable 
form factor. 

The planar structure suggests a printed circuit card as the 
means of interconnection. The dual-in-line (DIP) hermetic package has 
been selected as the preferred logic package. It would be desirable, 
where possible, to use this package for passive components and for 
power supply packaging. For purposes of this study we have estimated 
that each processor and each memory with their power supplies, bus 
guardian units, and bus isolation gates will require the equivalent of 
180 16-lead dual-in-line packages. In order to interconnect these in a 
reasonable area the printed circuit card must be of a multilayer 
construction. We are allowing 6.45 cm2 of card area per dual-in- 
line package. This area includes the overhead for fastening the card 
in the module and for the I/O connector attachment. 

Ease of module repair precludes adhesively attaching the multi- 
layer board to one side of the module structure for good heat transfer. 
We would like a system which would allow access to both sides of the 
board. If a dual-in-line package is simply soldered into a board, the 
only conductive thermal contact is through the DIP kovar leads. 
Radiation and convection do not provide low resistance thermal paths 
from the package, nor do the kovar leads provide a particularly good 
heat flow path. To achieve a better thermal path, "2oz"copper cladding 
will be used on both sides of the board. The DIP packages will be 
adhesively attached to the top layer of copper using double sticky tape. 
Heat will be removed from the board through standoffs coming from both 
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external faces of the module on a 50.8 mm matrix. The screws through 
these standoffs will serve triple duty as primary module fasteners, 
heat transfer paths, and structural members necessary to withstand 
sudden pressure changes. This thermal scheme can keep the temperature 
difference between a 16-lead DIP and the modular convective surface 
below 33.3Vhtt. If necessary, this AT can be further lowered by 
increasing the PC board copper cladding thickness, using a more highly 
conductive but less repairable DIP adhesive, and by increasing the 
area and/or number of standoffs, 

The multilayer printed circuit card will consist of 4 internal 
wiring layers plus one ground plane and one power plane. It is not 
anticipated that additional ground planes will be required between 
wiring layers. 

The connector Will consist of 2 rows of 80 pins on 3.96 mm 
centers. The pins will be used in pairs to provide doubly redundant 
connections to the various buses. A skirt will be provided completely 
around the protruding connector pins to provide protection when the 
module is not plugged in. This skirt is pressed against a gasket 
material when the module is installed to provide a seal between the 
exposed connector pins and the convective cooling air. Two guide pins 
will be provided to guarantee proper alignment during connector mating 
and that the module is not installed backwards. 

Two levers can be provided on the outboard end of the module. 
These are used to provide the force for both engaging and disengaging 
the module connector. 

Two guide bars are provided on the module which are used to 
engage guide slots which align the module when it is inserted and with- 
drawn from the multiprocessor assembly. An external view and cross 
sectional view are shown in Figures 8.1 and 8.2. 

The multiprocessor case must perform several functions, the 
most important of which are listed below. 

1. It must provide for the physical protection and support 
of the modules placed in it - 20 processors, 20 memories, 
and 6 modules containing clocks and I/O access electyonics. 

2. It must provide for the electrical interconnections of 
the modules to each other and to the external world 
through module connectors, I/O connectors, and power 
connectors. 
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3. It must serve to direct the cooling air for proper 
cooling. 

4. It must assist in providing EM1 protection. (Part of 
this burden falls on the module cases.) 

Figure 8.3 is a schematic of a case which provides these functions. 
The case is 432x457~1245 ~JTI overall outside dimensions. The module 
slides are placed on 25.41tun centers, which allows 6.35mm between 
adjacent modules for cooling-air flow. 

A common plenum, with the 10 fans attached and containing an air 
filter, communicates with the module section through a series of holes 
which line up with the spaces between the modules. The air exits 
through similar holes in the top of the box, which can be protected 
against falling objects by a baffle plate. If cooling air is available 
in the avionics equipment racks this design can easily be adapted to 
the use of this air. The fans can be retained as a backup or removed 
based on the reliability of theplase'sforced air system. Not shown in 
the figure is a hinged and latching front plate which closes the box. 

The modules are guided into the case by module slides, and the 
final connector mating is guided by two pins on the module connector 
which fit into two corresponding holes at the ends of the box 
connector. There are two levers permanently attached to the back of 
the module which engage slots in the box to provide the force for 
engaging and disengaging the connector. These levers also serve to 
lock the modules in place with the box cover providing a backup for 
this function. 

Connections to the outside world are provided through five 
power connectors and six I/O connectors. These connectors are of the 
circular, bayonet locking type. The motherboard connector contacts are 
of the fork type on 3.96 mm centers and are installed with their 
individual insulators in an accurately drilled matrix of holes in an 
aluminum plate. 

Table 8.2 shows the various signal and power wiring which must 
be carried by the computer motherboard. The motherboard wiring consists 
of all straight buses. The power buses must be capable of carrying 50 
amps at the nominal 28 VDC input voltage. The internal supplies must 
be able to operate with a considerable variation in input voltage so 
that voltage drop along the line is not as important as 12R losses. 
We have assumed a copper bus bar of a cross section 2.54x2.54 mm 
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which will have a resistance of under 5 milliohms for a 1.22 mm 
This would produce less than 0.02 volts drop at the end of the bus and 
an 12P? dissipation on the order of 5 watts in the bus. The ground 
return buses can either be of the same type or can be made common. The 
bus bars will be laminated to a .79 mm Lhick piece of GlO epoxy glass 
for structural integrity and ease of handling and will be separated from 
the bused signal paths, which will be a second board. 

A sample section of the board used for signal paths is shown in 
Figure 8.4. The I/O net wires are run as signal pairs on opposite sides 
of the board while the other signal lines are run over a ground.plane 
buried in the center of the board. Wires from the I/O and power con- 
nectors are joined to the buses by soldering them to extra through holes 
made in the buses at one end. 

8.2.2 Production Packaging Design 

We project that hybrid technology will have achieved adequate 
maturity to be seriously considered for the production fault-tolerant 
computer design for 1985 production. Several benefits which will 
accrue from the use of hybrid technology when compared to the use of 
multilayer printed circuit boards and discrete components are listed 
below: 

1. A substantial size and weight saving. 

2. A small increase in computer speed and a small decrease 
in power required - assuming the use of the same 
semiconductor chips. 

3. A small saving in cost. 

4. The stocking of a small number of hybrid circuit types 
for repair rather than a large number of discrete 
component types. 

5. Advances in technology can be used to build hybrids 
which can be used as one for one replacements for 
old hybrids when repairing the computer. 

We further project that semiconductor advances will provide much 
higher levels of chip integration and a total power requirement of 
350 watts vs. 1400 watts for the brassboard. 

The overall design concepts used for the brassboard will be 
maintained in the production design. That is, the modularity, bus 
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structure, and cooling will be similar. The hybrid circuits will allow 
the active area of the computer module to be reduced from 38lx356mm to 
38.1x101.6mm The overall module thickness will be 12.7nm and will irrclude 
a built in heat exchanger to take care of the increased power density. 
The reduced size of the module will require that the connector pin 
spacing be reduced from 3.99-2.54mm so that the required number of 
contacts can be fitted in the available length. A computer module made 
using hybrid technology is shown in Figure 8.5. The interconnections 
between the 4 to 8 hybrids inthemodule can be made using either a 
multilayer epoxy glass board or a multilayerceramicboard. The ceramic 
board can offer a better heat transfer path to the heat exchanger, 
although it is more difficult to mount than an epoxy glass board 
because it is more easily cracked by thermally induced stress caused by 
the difference in expansion coefficient between the board and heat 
exchanger. This problem can be designed around by making the heat 
exchanger in such a way that it can provide stress relief even though 
it is firmly soldered or cemented to the ceramic board. 

The production computer case will be made in much the same 
configuration as the brassboard. The electronics section will be 
152.5x165x635mm without the fans, plenum, I/O connectors, and power 
connectors. When these items are added to the box the overall dimen- 
sions are 229x229x66Omm compared to the brassboard overall envelope 
of 432~457xl245mm Note that no space is required between modules, 
except clearance, because cooling is done by directing air through the 
module heat exchanger rather than between modules as done on the 
brassboard. See Figure 8.6. 

It is also possible to package the computer in a one and one- 
half ATR box measuring 496mm long by 39Orm-n wide by 19.35mm high as 
shown in Figure 8.7. There are some drawbacks to this package which 
must be considered. Probably most important is the more complex bus 
structure dictated by the requirement that the modules be placed in 
2 rows because of the box length limitation. Also, normal racking 
would require that the entire computer case be unplugged each time a 
module is removed. 
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CHAPTER 9 

MULTIPROCESSOR SIZING STUDY 

The applications study reported in thechapter 3 has been 
useful in identifying the functional makeup of some of the important 
alternative system implementations that can be foreseen. The study 
reported in this chapter concerns the parameters of the multiprocessor 
that are impacted by its functional charter, including its survivability. 

It is generally expedient to characterize a computer in terms of 
its major resources, which are processing speed, memory capacity, and 
input/output bandwidth. Speed is particularly difficult to quantify 
in the absence of benchmark programs. A common approach is to assume 
that the architecture is reasonably well matched to the application 
and simply characterize the speed in terms of operations per second 
(OPS). An important shortcoming of this approach is that not all 
operations are equally fast. Ratner et al. [4] have largely surmounted 
this shortcoming in their requirement study by separate designations of 
"short" OPS and "long" OPS. Their approach is also followed here. 

In the case of a multiprocessor, the memory access bandwidth 
assumes a substantially larger importance than it does in a single- 
processor computer. The use of a serial memory access bus is of partic- 
ular concern, as it can easily become the limiting factor on speed. We 
therefore adopt memory bus bandwidth as a primary parameter for this 
multiprocessor, along with the other primary factors of processing 
speed, memory capacity, and input/output bandwidth already mentioned. 

Before proceeding to a discussion of specific parametric 
relationships, we shall first treat the major partitioning issues that 
relate the parameters of the multiprocessor to the overall functional 
requirements for the system. It is clear thattheparameters of the 
multiprocessor are not uniquely determined by the system functional 
requirements. Following sections introduce parameters that describe 
internal mechanisms and functions, and exhibit approximate models for 
the determination of processing speed and memory bus bandwidth. The 
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chapter concludes with a discussion of architectural consequences of the 
sizing study. 

9.1 *tern Partitioning 

Chapter 1 describes the system context 
The element of that discussion most important 

for the multiprocessor. 
tothepresent subject is 

the significance of digital processing local to, and dedicated to, the 
individual subsystems. A certain amount of information processing is 
present in most contemporary subsystems, though most of it is analog 
rather than digital. With the development of integrated avionics and a 
reliable central computer, one could conceive-of a move to centralize 
all information processing. To do this, however, would work against 
overall economy and dependability. The reasons are indicated in the 
chapter just cited. 

On the other hand, there is nothing to prevent the use of the 
multiprocessor in a highly centralized system if circumstances warrant 
it. One example might be an experimental deployment of an integrated 
system in a past - generation aircraft, in which local information 
processing is minimal. Another example might be a future - generation 
aircraft whose functional scope is small enough to fit comfortably in a 
single computer. 

Looking in the oppositedirection, it is evident that the more 
sophisticated future applications can benefit substantially from 
distributed information processing. Numerous examples come to mind, 
ranging from the preprocessing of data from sensors such as inertial 
navigation units, collision avoidance receivers, and microwave landing 
receivers, to closed loop high frequency control of each of a redundant 
set of small control surfaces on control-configured aircraft. In 
large-scale applications such as these, the employment of distributed 
processing will not only offload the central computer, but will enable 
the inclusion at low cost of additional functions, relating to subsystem 
monitoring and diagnosis, that would otherwise not be cost-effective to 
implement. The central computer's function in a highly distributed 
application, although by no means negligible, would gravitate toward 
outer loop control and coordination, with the result that its perform- 
ance capacity may not need to be any larger than that of a fully 
centralized system of modest scope. 
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According to the foregoing argument, the functional requirements 
for an aircraft do not translate simply into performance parameters for 
the multiprocessor. Moreover, the converse is also truet the performance 
parameters of a central computer do not per se govern the functional 
capacity of the system. It is therefore important to consider the 
impact of a range of functional requirements on the central computer's 
performance requirements. For this purpose, a parametric model has 
been developed for the two performance measures most crucial to the 
multiprocessor architecture: processing speed and memory bus bandwidth. 
Memory capacity and input/output bandwidth are more simply related to 
the functional requirements. The next two sections explain the origins 
of the parameters of the model. 

9.2 Program Execution Parameters 

A predominant characteristic of the multiprocessor is its 
retention of instructions and data in a common memory. In order to 
execute programs, processors must acquire instructions and data from 
this common memory and must transfer computed data to it. The use of 
cache memories local to processors tends to reduce the volume of common 
memory data transfers for a given function for two reasons. First is 
the option of storing permanently some fractionofthe overall program 
in all of the cache memories. Second is the option of executing 
instructions more than once after they are brought from the common 
memory. The first involves the cost of replication of instructions 
among all processors. The second option is to allow the program 
segment to remain in temporary cache until it has executed some number 
of times. If this number is very large, the result is more of a 
multicomputer than a multiprocessor, and the more dedicated each 
processor becomes. If the program segment is executed only once before 
beinq overwritten, some repetition will still occur due to the 
repeated use of some of the instructions in program loops. 

9.2.1 Macros 

In this architecture, a certain amount of basic procedure must 
be stored local totheprocessors in order to be able to operate at all. 
It might be pointed out that the instructions stored permanently in 
cache memory act as macro extensions of the microprogram. Indeed, it 
is likely that certain cache macros will be moved into or out of micro- 
program as they become more or less utilized over the evolution of 
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the system. For the sake of this parametric sizing study, however, it 
has been assumed that the only microprogrammed macros relevant to 
application programs are those apt to be found in conventional computers, 
for example floating-point multiply and divide. To represent the 
performance impact of other macros, located in cache memory, we define 
the parameter MACRO, which is a bus bandwidth compression factor due 
to the use of macros. It is the ratio of the number of instructions 
from common memory needed to execute a program with macros, to the 
number needed without macros. 

. 

9.2.2 Looping 

Another facet of the architecture is the principle of job step 
execution. Job steps are relatively short programs that generate 
sample-time updates of control variables. They are executed from cache 
memory, which is loaded from common memory for the purpose. At the end 
of the job step, its instructions are no longer retained, in order that 
the processor can seek a new job step to perform. This produces a cost 
in memory bus bandwidth, because cache memory must be reloaded for each 
job step. The main advantages in doing so are minimal reconfiguration 
penalty and convenient memory and processor resource sharing. During 
the execution of a single job step, there is a probability that some of 
the instructions brought into cache will be executed more than once, as 
in the case of a loop. A parameter called LOOP is used to represent 
this probability. LOOP is a compression factor like MACRO, and is the 
ratio of instructions fetched from common memory to the number of 
executions among them. 

9.2.3 Bus and Cache Memory Overheads 

The use of a loadable cache memory, in addition to its advantages, 
involves some overhead in managing the loading and storing operations 
with common memory. For each instruction loaded into cache memory, 
there is an average number of instruction times, of the order of one, 
used for cache management and loading delays. This number is represented 
by the parameter CACHE. Other overheads associated with the memory bus 
arise from delays involved in address transmission and data handling. 
These are represented by the parameters ADDRESS and DELAY. ADDRESS is 
a multiplier on memory bus bandwidth, and DELAY is the delay per fetched 
data word measured in short-instruction times. 
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9.2.4 Queuinq 

Another parameter of significance in sizing time shared resources 
represents excess or unused resources over and above those needed for 
serving useful functions. Both instruction execution and memory bus 
transfers are subject to queuing delays, which become excessive as the 
utilization approaches one hundred per cent. We therefore define a 
parameter QUEUE, which is the fraction of available processing resources 
that can be allocated to useful work,and another parameter QUEUEBUS, 
which is the corresponding fraction of the bus bandwidth. 

9.2.5 Executive Overhead 

The executive program is run each time a job step is dispatched. 
The program will be mostly or entirely available as a macro in permanent 
cache memory, but the executive data bases, such as the job queue, event 
queue, etc., reside in common memory. The resources consumed by the 
executive are dependent on queue length, the complexity of the executive 
function, and the number of job steps executed per unit time. The 
parameter SAMP represents the gross sampling rate of the computer, and 
is defined as the average number of job steps dispatched per second. 

9.3. Eunction Parameters 

The preceding section identified a number of parameters related 
to the multiprocessor architecture. This section deals with a functional 
breakdown of the multiprocessor's operation into four categories: 
application programs, executive activity, periodic test, and system 
redundancy management. 

9.3.1 Applications 

There are several dimensions to the subject of applications. 
They include time frame of aircraft manufacture and logevity, size and 
mission of aircraft, aircraft design dependence on integrated system 
criticality, accompanying ground aid development and its operational 
constraints, and flight regime (takeoff, cruise, etc.). We find a 
broad range of potential applications, ranging from non-critical to 
wholly critical. Interestingly, over this broad range, the impact on 
the resource parameters of the fault-tolerant system is primarily 
external to the central computer. This -is partly explained by the fact 
that a substantial fraction of the central resources exist purely to 
establish system fault tolerance. Secondarily, the resources required 
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for aircraft control tend to move from the central computer out to local 
processors in the more sophisticated of the projected systems. All 
indications are that applications will nevertheless be the predominant 
consumers of central resources. The estimates of Ratner et al. [4] have 
been found to be reasonable in comparison with other analyses and 
estimates, when adjustments are made for overheads and decentralization. 
The actual numbers depend on specific applications, but one can 
identify likely ranges in order to establish bounds for sizing. The 
parameters that characterize programs are first the operations per 
second, which are divided into two categories for short and long 
operations. SHORTS and LONGS are the corresponding parameters and are 
measured in instructions per second. The execution time ratio of long 
to short operations is called R. For applications programs specifical- 
ly, we use ASHORTS and ALONGS. Another functional parameter is the 
number of data words per unit time, for which we use DATA in words 
fetched or stored per second, and ADATA for applications programs. 

The required memory bus bandwidth is sensitive to the parameter 
AMACRO, the bus compressionfactor for applications programs due to the 
use of macros. The diversity of the various applications functions 
and their relatively large program volume poses some challenging trade- 
off problems for the multiprocessor. The basic tradeoff is between bus 
bandwidth and permanent cache memory. Short procedures with high usage 
are good candidates for inclusion as cache macros, where long, 
infrequent procedures are not. The dividing line depends on several 
factors. First, the cost of the memory bus is a nonlinear function of 
bandwidth. At low bandwidths, it is relatively insensitive, whereas 
it seems to rise steeply at a point that is estimated to be in the area 
of ten to twenty megabits per second. At this point, the cost of 
permanent cache memory in each processor becomes less severe in 
comparison to bus cost. Next, one considers the number bf processors 
involved. This number multiplies the cost of permanent cache memory, 
whereas in common memory the cost multiplier is three for the principal 
memory triad in which the procedure is stored, plus any spare modules. 
Finally, theinclusion of procedures in permanent cache as macros 
inevitably reduces flexibility by increasing the penalty for changes. 

Two main criteria suggest themselves for the selection of'macro 
procedures. The first is utility, examples of which are seen in such 
procedures as vector and matrix manipulations, trigonometric and trans- 
cendental functions, and software module interface operations. The 
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second is tasks with very high sampling rates. Such tasks are expected 
to be relatively rare in a central computer. Additional procedures may 
gravitate into macro form as they become fixed for the foreseeable 
remainder of the life cycle. 

The situation with looping is somewhat different from that of 
macros, in that any tradeoffs must be made in the process of generating 
applications programs, and are out of the system designer's hands. The 
looping parameter ALOOP for applications programs, then, is almost 
purely an 2 priori prediction of looping behavior. 

9.3.2 .Executive 

Executive program activity has been roughly characterized in 
Section 9.2. The program's operation is characterized by the following 
parameters. The number of equivalent short operations in one dispatch 
is called EXEC. The production of EXEC and SAMP, the overall sampling 
rate, gives ESHORTS, the number of equivalent short operations per 
second for the executive. Most or all of the executive program will be 
in permanent cache memory, so that its macro compression factor, EMACRO, 
will be relatively small in value. The looping factor, ELOOP, will 
likewise be small, as the executive is a highly repetitive program. 
The data access is characterized by the parameter EXDAT,.which is the 
average numberofwords accessed for each job dispatch. The product of 
EXDAT and SAMP gives EDATA, the total number of data accesses per 
second for the executive, The size of EXDAT is more or less proportional 
to the number of different tasks that the computer handles. The job 
and event queues need to be ordered or searched for every job step 
dispatch. The number of words handled per insertion or search depends 
on dispatch statistics and search strategy, as well as the number of 
tasks. Because of these complexities, and because this data volume is 
not a dominant factor in the total picture, no more detailed modeling 
is attempted of this operation at this time. We rather treat EXEC 
and EXDAT by estimating on the basis of past experience. 

9.3.3 Test and Redundancy Management 

Test programs are run periodically in processor triads to expose 
latent faults in all modules and buses. The frequency of testing is 
not directly dependent on the applications programs, but rather depends 
primarily on the target failure rate of the multiprocessor and the 
predicted module failure rates. The parameters of testing programs 
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are these: Each triad requires an average number of short operations 
denoted TEST. If there are T triads, a total of TxTEST short operations 
are used per test. The test frequency, TFREQ, multiplied by TxTEST 
gives TSHORTS, the equivalent short operation rate due to testing. The 
parameters TMACRO, TLOOP, and TDATA are defined similarly to their 
counterparts described earlier. TDATA is TxTSTDATxTFREQ. 

Redundancy management programs are analogous to test programs, 
but serve primarily to maintain the integrity of the external system. 
Because of the relative simplicityof this category of programs, we 
will deal directly with the major parameters RSHORTS, RMACRO, RLOOP, 
and RDATA. 

9.4 Parametric Models 

In the last two sections, we have defined a family of parameters 
that lead to approximate models for processing speed and bus bandwidth. 
In this section these models are exhibited and discussed. 

9.4.1 Instruction Execution Rate 

The total instruction execution rate of the multiprocessor is 
the product of the number of processor triads and the execution rate 
of one processor. It will be convenient to measure execution rates in 
SHORTS PER SECOND. 

The available execution rate must be sufficient to allow for all 
computation functions and overhead functions. Allowance must be made 
for all data accesses, during which it is assumed that no processing 
takes place. The total instruction execution rate is approximated 
roughly as follows: 

1 SHORTS/SEC = QUEUE - [EXECUTION RATE + DATA ,DELAYS]. (1) 

An expression for the first term is as follows: 

EXECUTION RATE = ASHORTS (1 + CACHE x AMACRO x ALOOP) 
+ ALONGS (R + CACHE x AMACRO x ALOOP) 
+ ESHORTS (1 + CACHE x EMACRO x ELOOP) 
+ TSHORTS (1 + CACHE x TMACRO x TLOOP) 
+ RSHORTS (1 + CACHE x RMACRO x RLOOP) (21 

The terms of the form (1 + CACHE x MACRO x LOOP) represent direct 
executions plus a cache'management overhead for those instructions that 



are not already resident in cache memory, The term multiplying ALONGS 
is similar, except that the direct execution of a long operation takes 
R times as long as that of a short one. Equation (2) can be further 
broken down by means of parameters defined in the preceding sections: 

EXECUTION RATE = ASHORTS (1 + CACHE x AMACRO x ALOOPf 
+ ALONGS (R + CACHE x AMACRO 'x ALOOP) 
+ EXEC x SAMP (1 + CACHE x EMACRO x CLOOP) 
+ TxTEST x'TFREQ (1 + CACHE x TMACRO x TLOOP) 
+ RSHORTS (1 + CACHE x RMACRO x RLOOP) 

The second term of (1) can be expanded as: 

(3) 

DATA DELAYS = (ADATA i- EDATA + TDATA + RDATA) DELAY, (4) 

and further expanded as: 

DATA DELAYS = (ADATA + Ex~Arr x sAMp + TxTSTDAT x TFREQ + RDATA) DELAY 
(5) 

9.4.2 Memory Bus Bandwidth 

The memory bus bandwidth is measured in bits per second. Since 
the parameters defined thus far are word-oriented, it is convenient to 
model first WORDS PER SECOND. This must be adequate to deliver 
instructions and data to the cache memories. Therefore 

WORDS/SEC = [BUS INSTRUCTION WORDS + BUS DATA WORDS] ;;;g;& (6) 

where ADDRESS is the bus addressing overhead factor, and QUEUEBUS is 
the associated queuing factor. The first term can be expanded as 
follows: 

BUS INSTR WORDS = (ASHORTS + ALONGS) AMACRO x ALOOP 
+ ESHORTS x EMACRO x ELOOP 
+ TSHORTS x TMACRO x TLOOP 
+ RSHORTS x RMACRO x RLOOP (7) 

The expression could be further expanded by replacing ESHORTS and 
TSHORTS as in (31, but this will be omitted here for the sake of 
brevity. 

The second term, assuming all data is the same length as an 
instruction word, is 

BUS DATA WORDS = ADATA + EDATA + TDATA -I- RDATA (8) 

The expansions for EDATA and TDATA, as in (51, are omitted. 

176 

-_ y-7---- -. --. .- --. _.__ -__----- I _---- -- d : . 
- -- ; . . .‘. ~,‘.i c,, ,. - . ; *^ . .-‘. 



9.4.3 Sensitivities 

Given that the independent variables of the parametric models 
are known only to an approximation, some of the terms in the equations 
are difficult to predict because they .are products of several parameters. 
For example, one term in (7), when further expanded, becomes . 

ADDRESS 
QUEUEBUS x EXEC x SAMP x EMACRO x ELOOP. 

Suppose each parameter is estimated to within plus or minus 20%. The 
uncertainty range of the term is between 0.8 6 6 and 1.2 , or between 0.26 
and 2.98, or greater than an order of magnitude. On the other hand, 
the only factors common to many terms are QUEUEBUS, CACHE, ADDRESS, and 
DELAY. Of these, the last two are essentially hardware design parameters. 
CACHE is a parameter of the system software, which will be determined 
at a relatively early development stage. Queuing parameters are 
sensitive to the executive program duration, the average job step 
duration, and permissible dispatch delays. This issue is further 
discussed in Section 9.5. 

9.4.4 Parameter Ranges 

Table 9.1 lists some approximate ranges for the parameters 
defined earlier in this chapter. These ranges are based on various 
estimates, and the purpose of this subsection is to provide a degree of 
substantiation for them. 

QrJEUE and QUEUEBUS: (0.5, 0.7, 0.9). A good deal remains to be 
learned about these parameters because of their relationship to delays. 
This is further discussed in the next section. The ranges given are 
felt to be sufficiently broad to cover any probable value. 

R: (5, 10, 20). The ratio of long to short instruction execution 
times is a hardware design parameter, unless a highly integrated 
processor is chosen in which these operations are previously constrained. 
The data format is also a factor. We presently assume a floating point 
format. Long instructions account for a large enough fraction of the 
processing task to be worth a reasonable hardware investment for the 
sake of speed. 

CACHE: (1.0, 1.5, 2.0). The CACHE memory loading overhead 
depends on the bus speed, the bus delay, and the number of words to be 
fetched at one time. The fewer words fetched at a time, the greater 
the overhead. If many words are fetched, this overhead tends to 
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TABLE 9.1 

MINIMUM, MEDIUM, AND MAXIMUM ESTIMATES FOR SPEED 

QUEUE 

QUEUEBUS 

R 

CACHE 

ASHORTS 1OOK 200K 400K 

ALONGS 25K 50K 1OOK 

AMACRO x ALOOP 0.2 0.4 0.6 

ADATA 10K 20K 40K 

EXEC 100 200 400 

SAMP 200 600 1000 

EMACRO x ELOOP 0.05 0.1 0.2 

EXDAT 30 60 90 

TEST 2K 4K SK 

T 4 8 12 

TFREQ 0.5 1 2 

TMACRO x TLOOP 0.05 0.1 0.2 

TSTDAT 50 100 200 

RSHORTS 1K 2K 4K 

FtMACRO x RLOOP 0.05 0.1 0.2 

RDATA 200 400 800 

ADDRESS 1.2 1.4 1.6 

DELAY 1 2 4 

AND BANDWIDTH PARAMETERS 

MIN. 

0.5 

0.5 

5 

1.0 

MED. 

0.7 

0.7 

10 

1.5 

MAX. 

0.9 

0.9 

20 

2.0 
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diminish until queuing delays begin to become appreciable. It is 
presently assumed that the typical fetch will consist of the order of 
eight words, and that the cache overhead will be fractionally greater 
than the bus latency alone. This overhead is compensated by the band- 
width reductions made possible by the cache memories. 

ASHORTS: (lOOK, 200K, 400K operations per second). The appli- 
cation study by Ratner et al. 141 previously cited suggests a value for 
this parameter just under 200K short operations per second. This 
figure is based on the inclusion of some unlikely functions and the 
exclusion of some likely ones, in the light of more recent investigations. 
We feel that we can project with reasonable confidence to within a 
factor of two or so what the nominal sizing of the central computer 
should be. Estimates have been made assuming that the following 
capabilities will be available in the central computer: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Flight control, including stability augmentation, load 
alleviation, mode stabilization, ride improvement, and 
flight envelope limiting. 

Navigation and guidance, including area navigation, 
inertial navigation, autoland, autopilot, and hybrid 
navigation. 

Air data processing. 

Collision avoidance processing. 

Display data management, 

Centralized engine management. 

Integrated aircraft systems management, including 
management for fuel, weight, cabin environment, power, 
caution and warning, and maintenance data. 

The net result is that 200K short OPS remains a reasonable estimate for 
an ambitious future application, assuming that local processing is 
available for displays, engine controls and various other dedicated 
subsystem support functions. An upper limit of double this figure 
represents a case where a larger load results either from greater 
complexity or from a more centralized system. A lower limit could be 
quite a bit smaller, especially for an experimental application, but 
for sizing purposes a lower limit of half the expected value is used. 
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ALONGS: (25K, 50K, 1OOK operations per second). This range is 
chosen by the same rationale as the previous one. The high end of the 
range represents a very substantial computing load, which would have a 
hardware impact in size and/or power if it were to be accommodated. 
This parameter is one that can effectively be offloaded by local proces- 
sing. 

AMACROxALOOP: (0.2, 0.4, 0.6). With increasing control sophisti- 
cation, the benefits of macros tend to increase, in the areas of matrix, 
vector, trigonometric, and transcendental operations for navigation, 
guidance, control, and display. Rather little is known about the loop- 
ing parameter despite some prior experimentation. As more macros are 
used, the incidence of looping will tend to become less, because highly 
repetitive operations tend to be the good candidates for macros. For 
this reason we have chosen to estimate the combined parameters, instead 
of each separately. The given range is a rough estimate based on 
Appendix B of reference 141, and on limited experimental experience. 

ADATA: (lOK, 20K, 40K words per second). The range given is 
based on the instruction execution rate. The data rate applies to 
those quantities that are stored and accessed from one job step to 
another, which will probably be an order of magnitude below the 
instruction rate. 

EXEC: (100, 200, 400 operations per sample). The number of 
short operations per second required for the executive for each sample 
period of each application program in a current experimental implementa- 
tion is of the order of one hundred. The given range is based on the 
expectation of a more complex job dispatch strategy. 

SAMP: (200, 600, 1000 samples per second). Although the number 
of samples per second could be quite low in an experimental situation, 
a full-scale application might easily range up to the order of a 
thousand. At this magnitude, it could have a significant sizing impact 
depending on the degree to which efficient queue management strategies 
are developed. 

EMACROxELOOP (0.05, 0.1, 0.2). Owing to its high usage and 
inherent repetition, the executive involves rather little overhead in 
cache management and memory bus traffic. It resides mostly in 
permanent cache memory. 
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EXDAT: (30, 60, 90 words per sample). This parameter is 
sensitive to search strategies as well as the number of functions 
served. The range reflects an extrapolation of current experience. 

TEST (2K, 4K, 8K operations per triad iteration). This 
parameter represents the average number of instructions needed to 
conduct one test iteration on one processor or memory triad. The range 
reflects experience with self-test programs in the past. It may be 
assumed that no one iteration will test every possible element. Rather 
each iteration will be designed to test most elements, the remaining 
ones to be tested on an occasional basis. In the case of memory triads, 
each iteration would test a fraction of the total contents. 

T: (4, 8, 12 triads). This range stems from a minimum system to 
the large system, including processor triads and memory triads. 

TFREQ: (0.5, 1, 2 cycles per second). The test frequency is 
related to recovery speed, which is an important reliability parameter. 
This range is estimated in part through the results of reliability 
modeling. It will depend on module MTBF to some extent. The frequency 
can in principle be dropped for peak load periods of short duration, so 
that the figure used here could represent a minimum level, while the 
'average frequency is boosted during the periods of lower activity. 
For modeling purposes, the reciprocal of TFREQ can be treated as a 
mean time-to-test. 

TMACROxTLOOP:(0.05, 0.1, 0.2). Whether or not the test programs 
reside in permanent cache memory, they involve much repetition, which 
keeps this factor small, 

TSTDAT: (50, 100, 200 words per second). Testing data from 
common memory should be virtually negligible. 

RSHORTS: (lK, 2K, 4K operations per second). 
RMACROxRLOOP: (0.05, 0.1, 0.2). 
RDATA: (200, 400, 800 words per second). 

These three parameters are foreseen to be small at this time, owing to 
the network management experience cited in Ref. 7. 

ADDRESS: (1.2, 1.4, 1.6 words times per word). This memory bus 
overhead factor depends on the number of words transferred per access. 
The estimate given assumes a moderate number of the order of ten, which 
may be a reasonable average in order to control queuing delays. 
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DELAY: (1, 2, 4 operations per data word). This is a measure of 
processing overhead to obtain or store data from/to common memory, and 
is analogous to the cache memory overhead for instruction fetching. 
Because of queuing, this quantity is sensitive to the average number of 
instruction words fetched at a time, as well as the number of data 
words at a time, 

9.5 Problems of Resource Sharing 

It is well established that the sharing of resources among 
multiple users with random arrivals produces rapidly-mounting delays as 
the total utilization approaches one hundred per cent. The delays are 
also related to the durations of each use of the resources. The delay 
times can be reduced by making the resources faster, by removing users 
from the system, or by making each use shorter while increasing the 
number of uses, The latter amounts to job partitioning, which is valid 
if overheads are neglected. 

In sizing the multiprocessor, it is assumed that users can not 
be removed from the system, (The use of priorities in allocating 
resources is to some extent an approximation of user removal, in that 
it favors those users whose needs are greatest). The use of job 
partitioning is possible, but resource access overheads must be taken 
into account, which acts as a limitation, It is primarily through the 
adjustment of resource speeds that delay criteria are met. The queuing 
parameters, QUEUE and QUEUEBUS, used in the preceding section, are 
resource speed adjustments to meet delay criteria, 

The processing'and memory bus bandwidth resources are both 
subject to queuing delays, but are substantially different from one 
another, The bus isa single resource, whereas there are several proces- 
sing resources operating simulataneously. The bus may be used for 
short, fixed time periods or alternatively for periods distributed over 
a wide range, This factor is determined by cache and data management 
algorithms, The processors are used for periods determined largely by 
the applications programs, where the distribution is apt to have a 
relatively narrow range, The computer!s performance must satisfy near 
worst-case conditions for processing resource delays, and average 
conditions for bus delays. 

The problem of multiple processing resources with low-variance 
time periods has been studied recently by Lala [6] as a doctoral thesis 
project. One of the interesting results from this work is that near 
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worst-case delays are not as sensitive to system load as average delays 
are. This has both good and bad consequences. In order to reduce delays, 
the processors must be made substantially faster, which can be viewed as 
bad. Once this is done, however, the computer can probably be loaded 
with additional jobs without severe impact on delay. This is a complex 
issue, made more complex by the inclusion of overheads such as the 
executive program, priorities, and the variety of sampling rates involved. 
Until this problem is studied further, we must anticipate that dispatch 
delays of at least several times the average job step length will occur 
often if the computer is reasonably well loaded. 

The bus problem more nearly resembles the classical single-server 
queuing problem, except that the usage durations can be affected by 
management algorithms. Pending further study, it is assumed that the 
bus access delays will be minimized by assigning an upper limit to the 
number of words that constitute a single transaction. This number must 
be a compromise between delays caused by long transactions and delays 
caused by access overheads for short transactions. The average delay 
is expected to follow the classical pattern, and should amount to a 
fraction of the transaction length. 

9.6 Three Size Estimates 

Table 9.2 summarizes sizing estimates for three variants of the 
multiprocessor architecture, corresponding to minimum, medium, and 
maximum applications loads, respectively. In all cases, a conservative 
estimate is made with respect to queuing and cache management. 

9.6.1 Small System 

For the small system, it is assumed that relatively little 
emphasis need be placed on enhancing macro and looping operations, so 
that the corresponding factors will be maximal for the sake of economy. 
Testing and redundancy management activities are assumed to be 
relatively light. The long-instruction ratio is taken to be medium, 
representing rather efficient microprograms. The data delay parameter 
is also assumed to be the medium value, by virtue of a microprogram- 
supported bus interface and a relatively short limitation on bus access 
times. About five percent of the processing resources are attributable 
to executive, test, and redundancy management activity. The remainder 
is more or less equally divided between applications short and long 
instructions. The modest bus bandwidth is largely used by applications 
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TABLE 9.2 

THREE MULTIPROCESSOR SIZE ESTIMATES 

SMALL BASELINE 
SYSTEM APPLICATION 

LARGE OR 
CENTRALIZED 
APPLICATION 

ASHORTS, ALONGS, ADATA, SAMP, T 
EXEC, EKDAT 
TEST, TSTDAT, RSHORTS, RDATA 
TFREQ 
ALL MACRO x LOOP 
R 
ADDRESS 
QUEUE, QUEUEBUS 
CACHE 
DELAY 

SHORT MOPS REQUIRED 
BUS KWORDS/SEC REQUIRED 
BUS M BITS/SEC REQUIRED 

@ 16 BITS PER WORD 
COMMON MEMORY CAPACITY 
PERMANENT CACHE CAPACITY 
WRITABLE CACHE CAPACITY 
INPUT/OUTPUT BANDWIDTH M BITS/SEC 

MIN MED MAX 
MIN MED MED 
MIN MED MAX 
MIN MED MED 
MAX MED MIN 
MED MED MIN 
MED MED MED 
MIN MIN MIN 
MAX 
MED MED MIN 

a 
1.1 2.4 3.1 
270 483 610 

4.3 7.7 9. 8, 
16K 32K 64K 
4K 6K 8K 
1K 2K 2K 
0.5 0.5 1.0 



short instructions, The memory and I/O estimates given reflect a 
modestly sized application such as a digital flight control system for 
a conventional short-haul aircraft, 

9,6,2 Baseline Application 

For a reasonably ambitious integrated,distributed aircraft system, 
we use the medium applications sizing parameters, A greater emphasis 
is now placed on macros and looping, as reflected inthelarger cache 
memories. Greater criticality is assumed here, and therefore a higher 
test frequency. No change, however, is assumed in the data delay and 
the long-instruction ratio. The sizing in all respects is roughly 
double that of the small system with essentially no hardware design 
differences other than module count and memory bus bandwidth. The 
processing resources are now becoming heavily expended in long 
instructions, and an increase in their speed would significantly reduce 
processing requirements, 

9.6.3 Large or Centralized Applications 

In the absence of significant local processing in the baseline 
application, or for a larger application than presently anticipated, we 
assume the maximal applications parameters. In order to accommodate 
this additional load without unduly stressing the memory bus bandwidth, 
we assume quite extensive macros, We further assume microprograms and 
hardware as needed to reduce the long-instruction ratio. Concessions 
are also assumed in hardware and software to minimize data access 
delays. At this point, executive, test, and redundancy management 
account for almost a quarter of the processing resources. The remainder 
are once again balanced between applications longs and shorts. The 
memory bus bandwidth is dominated by applications shorts, executive 
data, and applications data, in that order. 

9.7 Summary 

By a process of estimation and approximate analysis, we have 
arrived at rough projections for the desired sizing of a multiprocessor 
family, We anticipate that a production version bould be designed to 
support the baseline application, although at the present time, the 
option is open to place greater emphasis on the long-instruction ratio, 
by providing hardware aids to multiplication, division, and normaliza- 
tion, for example, Likewise the memory bus interface might be enhanced 
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by dedicated hardware. 

The new baseline processor executes a short instruction from 
cache memory in about two microseconds, and has a cache memory capacity 
of about 8K fixed and about 2K writable words of 16 bits. The bus 
interface is quite efficient, able to perform the equivalent of a 
direct cache memory access in about two microseconds. 

The baseline memory module would contain 8K or 16K words, 
acoording to the total capacity required and the state of semiconductor 
memory technology at the time of design. 

The baseline memory bus bandwidth is about ten megabits per 
second. Work is currently in-progress to better define the speed-cost 
tradeoffs in this speed range. The nominal I/O bandwidth is about one 
megabit per second, which is not expected to pose any significant 
problems. 

We can also begin to visualize the size of an experimental model, 
whose mission would be oriented to the, small system. The processing 
speed would be about the same as the baseline, but the long-instruction 
ratio and the memory bus interface delay would probably not be pushed 
to their eventual limits. The cache memory would be somewhat smaller 
than the baseline. The experimental version would, if feasible, 
utilize the full baseline bus bandwidths, in order to demonstrate the 
feasibility of expanding the computer capability by the addition of 
more modules. 
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CHAPTER 10 

DEMONSTRATION OF AN EXPERIMENTAL FAULT-TOLERANT 
MULTIPROCESSOR EMULATION 

This contract had as part of its goal the construction of hard- 
ware to serve as a test bed for the architectual concepts of the system. 
An existing experimental fault-tolerant multiprocessor emulator was 
used, and certain other test equipment was built for this purpose. 
Tests were conducted demonstrating many of the design features and also 
pointing to some design problems. Experimental goals, results and 
conclusions are discussed in this chapter. 

10.1 Experimental Goals of the Demonstration 

The experimental design and the exercises performed were chosen 
to test specific aspects of the system design. It was desired that the 
experiments be of an integrated nature, that is, one apparatus closely 
patterned after the projected final product, capable.of testing design 
concepts much as they would be integrated in the final product. 
Despite this, certain parts of the demonstration were separated out for 
isolated technical feasibility demonstration. 

10.1.1 Synchronous Processor Triad Operation in a 
Multiprocessor Environment 

Simultaneous operation of several triads of processors, each 
processor of a triad being synchronized with its partners,is a design 
requirement of the proposed design. This problem involves initial 
synchronization of three processors to start a triad, maintenance of 
synchronization over the long term, replacement of a processor with a 
spare, and bringing the new member into synch with its new partners. 
Additionally, mechanisms for operating multiple triads, such that there 
is no hardware interference, needed to be tested. Finally, the 
mechanisms for assigning a processor to a triad and to a particular bus 
needed to be tested. 
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10.1.2 Synchronous Memory Triad Operation 

Simultaneous operation of several triads of memory is similarly 
a design requirement of the proposed design. Synchronous operation 
of three memory modules needed to be tested. The ability to assign 
modules to different portions of the address space also required test- 
ing. Finally, the ability to assign a memory module to a specific bus 
required verification. 

10.1.3 High Speed Redundant Serial Bus 

The high speed redundant serial bus is the heart of the proposed 
architecture. For this bus to be viable, several features needed to be 
demonstrated: 

1. High speed synchronous transmission on three parallel buses 
from the three different elements of a triad with trans- 
mitters located at different points along the buses. 

2. The passive arbitration scheme for allocating the use of 
the bus to particular triads for short periods.of time 
needed to be tested within the context of extremely high 
bit rates. Additionally, the impact of the arbitration 
scheme on processor triad efficiency needed to be studied. 

3. The ability to successfully mask bus errors from a single 
bus of three active buses needed exploration. 

4. The ability to successfully protect the bus system from 
errant processors and memories required verification. 

10.1.4 Demonstrate Diagnostic Capabilities for Hardware Faults 

The proposed system includes hardware devoted to fault detection 
and isolation. It is of course desirable that this hardware be in some 
sense minimal or as little as possible while at the same time providing 
complete coverage. It was desired that the demonstration show the 
adequacy of placing error detection devices in only the processor 
modules. Additionally, it is necessary that the experimental system 
exhibit the ability to detect and recover from any fault of a large 
class of faults with minimal knowledge of the different mechanisms 
which contribute to that larger class of faults. For example, in order 
for the system to be viable, it is necessary that any processor sub- 
module fault be covered and that this be done without an exhaustive 
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list of all possible processor submodule faults and their contributing 
mechanisms. Detection and recovery from both hard failures and 
transient failures needed to be demonstrated. 

10.1.5 Demonstrate Software Framework for a -..- --- 
Fault-Tolerant System 

In order for the proposed system to function correctly it is 
necessary that the core software be perfect. It was important to show 
that the proposed system is sufficiently simple and clear that the 
required perfect software can probably be produced. 

10.1.5.1 Multiprocessor Executive 

A simple executive for handling task dispatch in a multiprocessor 
environment needed to be developed. This executive should assure that 
all of the processor triads are able to work together without distruc- 
tive interference or deadlock, while at the same time being simple, 
easy to verify, and reasonably efficient. 

10.1.5.2 Automatic Configuration Control - 

The philosophy for managing the available redundancy is based on 
the desire that all redundancy mangement, error detection, configura- 
tion control and recovery be invisible to the applications program. 
Automatic configuration control, operating invisibly while application 
code runs, even in the presence of faults in the hardware, must be 
demonstrated. 

10.1.5.3 Diagnostic and Latency Testinq 

Diagnostic code is required to pinpoint the sources of known 
errors and to unearth or discover latent faults. This code should run 
in conjunction with automatic configuration control to provide a fault- 
free environment for the applications code to run in and to provide 
completely invisible error detection and recovery from faults. 

10.1.5.4 Automatic Use of Cache Memory 

Because of the relatively slow serial bus between common memory 
and processor modules each processor is equipped with a small private 
cache memory. As with the cache of large machines, the use of this 
cache should be as transparent as possible to the applications code. 
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Unlike large machines, a completely hardware-based scheme for cache 
management cannot be used, due to cost and complexity. A software- 
based cache management technique is required which is invisible to the 
user within the overall system software structure, while being reason- 
ably efficient at the same time. 

10.1.5.5 Applications Program Support 

.The final software structure in which an applications programmer 
must operate is bounded by various constraints imposed by the require- 
ments dictated from the above. It needed to be demonstrated (1) that a 
programmer could work with these constraints given normal software 
support in the form of assemblers and various utilities, and in the 
form of executive supported macro functions, and (2) that the program- 
mer would perceive these constraints not as awkward difficulties to be 
worked around but as a natural framework in which to work and in which 
the task of software generation has been made substantially easier. 

10.1.6 Typical Applications Environment 

In order to demonstrate fully all of the features discussed in 
the preceding section, within the context of a reasonably integrated 
experimental apparatus, it is necessary that some of the effort be 
devoted to creating a simulated application environment which might be 
typical of projected situations for the final product. Within this 
context it should be possible to verify the predicted impact of sub- 
jective design judgements on the ease of use of this type of system, 
and to unearth unforeseen operational problems. 

10.1.7 Fault-Tolerant Clock 

A fault-tolerant clock or time base is required by the- system. 
An experimental demonstration of a highly redundant, extremely accurate 
clocking system capable of serving this function is required. 

10.1.8 Redundant Power 

Reliable power is required by any electronic assembly hoping to 
demonstrate high reliability itself. A demonstration of a viable 
approach to redundant power management should be made. 
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10.2 Experimental Results 

In order to demonstrate and validate as many of the design 
concepts as possible, an experimental apparatus was used which was able 
to emulate many of the design features of the proposed system. This 
demonstration was of an integrated nature in that the experimental setup 
duplicated much of the environment which a final product of this nature 
might encounter, and was therefore able to verify not only the separate 
design pieces forming the whole, but was also able to confirm predicted 
interactions between disjoint pieces, and in some case unearth unexpect- 
ed interactions. 

The basic experimental apparatus consisted of a fault-tolerant 
multiprocessor, modeled along the lines of the proposed system. The 
multiprocessor served as the control computer for a Boeing 707 aircraft 
as provided in simulation by'the Draper Laboratory's hybrid computer. 
The fault-tolerant multiprocessor consisted of 14 National Semiconductor 
IMP-16 based processor modules, seven common memory modules of 2K x 16 
words, two I/O ports, and six I/O nodes. There was additionally a 
monitor processor for observing the operation of the system. The 
processor modules included 1K RAM/lK ROM cache memory storage. With 
the 14 processor modules it was possible to operate up to 4 triads of 
processors simultaneously. With the seven RAM modules it was possible 
to operate two memory triads. The redundant data busing system was 
triply redundant and each attached module had two Bus Guardian Units 
associated with it for protecting the bus system. An I/O node remote 
from the fault-tolerant multiprocessor and local to the hybrid computer 
provided A/D and D/A interfacing to the simulated aircraft as shown 
in Fig. 10.1. 

This equipment was designed and constructed under an Independent 
Research and Development program at the Draper Laboratory, and most of 
the core softwarealgorithms were developed under a National Science 
Foundation Grant. The digital autopilot software and its attendant 
system integration were activities of this contract. 

10.2.1 Processor Triad Operation 

Synchronous operation of three processors as a triad was 
achieved early, with little difficulty. The ability to rapidly replace 
and resynchronize a failed or deactivated processor within a triad was 
also demonstrated with little difficulty. The mechanisms for arbitra- 
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ting which processor triad was to receive control of the bus system was 
refined. No unexpected interferences between processors were observed 
except for those associated with the competitive poll. The experience 
with the competitive poll is discussed in greater detail in Section 
10.2.3. 

10.2.2 Memory Triad Operation .- 

Synchronous operation of three memory modules as a triad was 
also achieved early. Memory modules of a triad were automatically 
synchronized, and the mechanism worked flawlessly and without difficulty. 
No difficulty was encountered in assigning modules to serve different 
portions of the common memory address space or in assigning modules to 
particular buses. 

10.2.3 High Speed Redundant Serial Bus 

Synchronous transmission and reception of identical signals from 
three different sources located at different points along the bus was 
demonstrated within the integrated system for data rates up to 2 MHz. 
Bus length in the experimental equipment was roughly 2 meters, about 
three times the bus length for the proposed breadboard. Data bits were 
placed on the data bus on the rising edge of the system clock and 
strobed on the falling edge. The clock was a square wave. Most of the 
propagation delay from transmitter to receiver was associated with 
active circuit device delays. Because of these delays data bits were 
barely stable at the receiver output when they were strobed, thus 
limiting bus speed to roughly 2 MHz. They remained stable well past 
the next rising edge of the system clock. The proposed specification 
moves the strobe to a full bit period after a data bit transmission 
begins, thus allowing an additional l/2 bit period for permissible 
propagation delays. Additionally, better device selection can reduce 
propagation delays by a factor of 2. Thus, by combining both improve- 
ments it should be possible to operate the serial bus at 8-10 MHz. 
An electrical model of a 10 MHz bus was constructed and tested at up to 
15 MHz to verify proper electrical performance of the higher speed bus. 
These tests indicated that an 8-10 MHz bus is feasible. 

Since propagation delay along the short bus did not account for 
the major portion of the transmission delays, the siting along the bus 
of the 3 transmitters had no effect on the results. 
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The passive arbitration scheme for allocating the use of the bus 
to particular processor triads worked as intended. However, the competi- 
tive poll number of the experimental system did not include a dynamic 
priority adjustment to boost a triad's priority if it lost a poll. The 
competitive poll number included only a field to assign a nominal fixed 
priorityto a triad and a unique identifier field. When several proces- 
sor triads were operating with the same nominal priority, it was found 
that there was a tendency for the triads with high identifier numbers 
to lock out those with lower numbers. For this reason it was necessary 
to add a dynamic priority adjustment field to the competitive poll 
number in the specification. This field value is boosted by 1 each 
time a triad loses a poll competition to another triad of equal assigned 
priority, saturating at a maximum value. It is reset to zero when the 
triad wins a poll. Thus, a triad which wins has its dynamic priority 
field set to zero. If it re-enters competition for the bus before 
other triads of equal nominal priority have been serviced, they are 
assured of service before that triad is again granted access to the bus. 

All receiving elements of the system used two-out-of-three 
voters to mask bus errors. The error masking system worked as intended 
with no unexpected results. 

The Bus Guardian approach to bus protect performed according to 
projection. Failed modules could be easily and reliably separated 
from the bus sytem. 

10.2.4 Fault Diagnostic Capabilities 

Each processor module of the experimental system included 
special circuitry for noting and recording disagreements among tHe 
three copies of each bus line. All other modules or receving elements 
had only error masking circuits. 

The error detection circuitry functioned as expected. Most 
faults manifest themselves as bus errors, and were therefore easily 
detected. Certain classes of latent faults were detected by diagnostic 
programs which basically forced bus errors if a latent fault existed. 
Records kept by diagnostic programs and fault isolation procedures 
enabled the successful test of techniques for locating both transient 
and hard failures. 

Most faults were detectable as one of a large class of faults. 
For example, all processor failures were detected at the bus without 
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the aid of special diagnostic code to test the processor or knowledge 
of the fault mechanism. Some special attention to specific failure 
modes and effects was required to devise latent fault detection programs. 
While code was not written for unearthing all possible latent faults, 
sufficient latent testing code was written so as to establish consider- 
able confidence that all latent faults could have been tested and 
detected. 

The bus isolation mechanism served as intended and was able to 
isolate all processor failures from the bus system. 

This integrated systems demonstration illustrated all significant 
aspects of the fault-tolerant computer architecture. It demonstrated 
the hardware capability to mask faulty unit outputs in the short run, 
and the capability to detect the fault, isolate the unit, and to 
reorganize so as to restore system health, all concurrent with normal 
program activity. 

10.2.5 Software Experience -_ _---- 

The software that was provided for the demonstration consisted 
principally of executive or system software and applications software. 
Executive or system software was written and debugged by staff throughly 
familiar with the experimental hardware and design objectives. The 
applications software was provided by a team which was briefed only in 
general terms as to the nature of fault recovery mechanisms and the 
overall system architecture. The applications software team was 
provided with detailed explanations of the executive-to-applications 
interfaces and executive services, as well as a reasonably short list 
of programming constraints. 

10.2.5-l Multiprocessor Executive 

The multiprocessor executive provided a simple task dispatch 
mechanism. Tasks awaiting their time of execution were organized in a 
queue sorted by scheduled start time. As processor triads became free 
(having finished a previous task) theywouldconsult this list and take 
the next scheduled job. Jobs could be inserted into any relative 
position of the time queue as long as it remained properly sorted. 
Executive functions provided for the routine iterative scheduling of 
the same job step, as might be required for an autopilot iteration for 
example. Alternatively, any job, by a call to the executive, could 
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insert a job into the time queue. The executive also handled the removal 
of a job from the queue when it was taken up for execution. 

In addition to the time queue, the executive handled an event 
queue. Jobs in the event queue have their execution blocked waiting 
for a particular event to occur. When the event did occur, the affected 
job was moved from the event queue to the top of the time queue. Jobs 
could be inserted into the event queue by any job, through a call to the 
executive. Events could be signaled by the executive or by another job 
through a call to the executive. 

The executive also provided interfaces for all I/O traffic, 
common memory to/from cache data transfers, real time clock, and for 
other relatively simple functions commonly thought of as executive- 
related. 

Critical to the success of the demonstration were the executive 
functions which provided for automatic error logging and recovery. 
Executive functions performed all common memory to/from cache transfers, 
and all I/O. During these functions any errors that might occur will 
become visible. The executive handled the proper logging of the error, 
scheduled recovery action, and, via voting, masked the error for the 
applicationstaskwhich was using the executive function. Thus, to the 
applications task, error handling is completely invisible. Additional- 

ly, since hardware monitoring is used, error checking, error masking 
and majority voting do not impact the applications execution speed. 

The executive schedules error diagnostics, latent test routines, 
and error recovery routines, using basically the same mechanisms used 
to schedule applications tasks. These executive tasks, running con- 
currently with the applications tasks, but in different processor 
triads, maintain the system, repairing faults, searching out latent 
failures, configuring processor triads and memory triads, and starting 
and stopping triads as required. Thus in the background, behind the 
system application, continuous activity is in progress to maintain the 
integrity of the system, an integrity that assures faultless and error- 
free execution of applications software. 

An executive providing these functions was written for the 
experimental test hardware. Although it was not a complete executive, 
in that only representative latent faults were tested, the executive 
did provide the basic facilities for providing error free execution of 
both executive and applications code. The software framework for 
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latent test procedures was fully developed, although it was only 
sparsely populated. Error detection and recovery from all classes of 
faults was demonstrated in the simulated environment without interfer- 
ing with the appications tasks. 

10.2.5.2 Cache Memory Management 

The experimental hardware and the proposed future system both 
have a common memory shared by all processor triads and private cache 
memories which are part of the processor modules. Programs are 
executed exclusively out of a processor's cache memory. Clearly, the 
burden of program loading from common memory, program overlaying, and 
other functions associated with bringing sections of code from common 
memory to the cache for execution could not be placed on the applications 
coding. 

In the experimental computer, a software cache-memory management 
system was provided as part of the executive. At the subroutine call 
interface, conventions were adopted that provided for the automatic 
loading of called routines. A last used, first out algorithm cleared 
space in the cache if unused space was not available. If a calling 
routine was dropped from the cache to make room for loading of the 
called routine, it is reloaded by the subroutine return interface. 

The efficiency of this process of loading instructions into the 
cache before execution will depend a great deal on the number of times 
an instruction is executed each time it is brought from common memory. 
Each word brought from common memory will take 5.25 usec in the proposed 
sytem. Thus one triad executing 190K instructions per second could 
completely fill the bus capacity. In the experimental system, it was 
found that the applications programs executed between 10 and 40 
instructions for every instruction brought from common memory. If an 
overall average of 20 can be maintained in the proposed system, a 
processor triad now projected to have a raw computing power of 300K 
instructions per second would load the bus with 15K instruction fetches 
per second. With reasonable allowances made for data transfers and 
queueing overheads, this suggests a maximum capacity of 4 or 5 processor 
triads before saturating the memory bus. 
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10.2.5.3 Application Software 

The application which was coded for this experiment involved an 
autopilot function for a Boeing-707-like aircraft and various instrument 
redundancy management tasks. The autopilot function performed was 
control wheel steering. This included rate stability augmentation as 
well as attitude hold loops. The redundancy management tasks involved 
various analytic redundancy management calculations so as to detect 
and identify simulated failures in dual sensors. Figures 10.2, 10.3 
and 10.4 show flow diagrams for the autopilot functions used. 

The application programming team was familiarized with the over- 
all operating system and the details of the interfaces between appli- 
cations software and the executive. Particular attention was given to 
an explanation of the cache memory management techniques and the result- 
ing constraints on the applications software. The programming team was 
familiar with real-time control and therefore accepted as normal the 
automatic scheduling of iterative tasks and the overall iteration/job 
step orientation of the executive. 

Surprising little detail was given concerning the triple-redun- 
dant nature of the processing taking place, or as regards the fault 
location and isolation techniques used by the executive. Indeed some 
of the programmers had virtually no acquaintance with the fault hand- 
ling procedures. Since no effort was made to hide these details from 
the applications programmers, their deletion from the overall program- 
mer orientation can probably be explained by the press of time and the 
fact that except for personal curiosity they had no real reason to know 
how fault tolerance was achieved. The goal had been to provide a 
system in which fault-tolerant mechanisms were invisible to the appli- 
cations coder, and to the extent we succeeded there was no need to 
explain the mechanisms to the programmer. 

The programmershadno greater difficulty generating the appli- 
cations code for this machine than they would have had for simple 
machines of similar instruction sets. The visible parts of the 
executive did appear as positive assistance and enabled them to produce 
the multi-loopsampleddata control algorithms with little difficulty. 
The use of the cache memory management techniques chosen did not seem 
to hinder or to make easier the task of coding these algorithms. 

Once written, the applications code ran concurrent with execu- 
tive fault-detection and isolation code in systems of two, three, or 
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four triads of processors. Fault detection and recovery enabled the 
system to tolerate multiple serial errors without impact on the appli- 
cation. Indeed, the system's ability to run despite hardware faults 
provided a system with virtually 100% availability. 

The minimum system capable of executing all applications tasks 
and the background systems management routines was a three-triad system. 
The computer could tolerate failures of 5 of the 14 processors before 
impacting the performance. Below three triads, the autopilot function 
was maintained at real time, and other functions slowed to conserve 
computational resources. At one triad, all but the autopilot functions 
stopped. The control wheel steering and stability augmentation were 
then maintained at real time and consumed all of the system computation- 
al power. 

10.2.5.4 Software Reliability Experience 

The difficulty in obtaining reliability in the demonstration 
software can be thought of ad indicative of the problems associated 
with producing reliable software for a future system. It is of course 
true that a full system will be more complex, but it is also true that 
software verification aids will be better. 

The basic core executive and configuration controller was rough- 
ly 3K words of coding. This was produced in assembly language and 
debugged largely in simulated situations in the monitoring processor 
and not even in the actual experimental multiprocessor. Because of 
poor visibility into the functioning of the individual processors, the 
system needed to be virtually bug-free before installation in the 
multiprocessor. The individual processors could not be single stepped, 
for example, and there were no indications of internal states to debug 
from. 

Experience showed that, in the code produced and throughly 
tested before installation, there were three undetected program errors. 
Of these errors two were discovered within the first days of operation. 
The remaining error in anunused module of the executive remained 
undetected for a month. Since that time no new errors have been 
discovered over the 6 months of operation. 

It can be projected from this experience that it is not impracti- 
cal to expect that the core software can be produced error-free with 
reasonable investments in verification and testing. 
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The applications code has not been as error free as the core 
software. Most of the errors have been algorithmic in nature, with 
incorrectly chosen gains for example. This type of error is more 
difficult to weed out without full operation in the simulation. All 
errors in the application programs were corrected after less than a 
week of introduction involving three or four simulator sessions. Again 
the proposed system will clearly be more complex, but extrapolating 
from present experience suggests that error-free applications program- 
ming is not unobtainable. 

10.2.7 Fault-Tolerant Clock Experience 

The system test bed did not provide for testing of clocking 
concepts. Consequently, these have been tested so far in stand-alone 
configurations and on the CERBERUS multiprocessor built and used in 
connection with earlier fault-tolerant architectural experiments at the 
Draper Laboratory. For a discussion of the present status of experience, 
refer to Volume II. 

10.2.8 Redundant Power Experience 

No redundancy of power conversion or distribution was attempted 
in the test bed. The present approach is therefore still largely con- 
ceptual, except that a protective module power interface has been built 
and preliminarily tested. Power redundancy is further discussed in 
Volume II. 

10.3 Demonstration Conclusions 

The experimental apparatus constructed and tested served as a 
basic validation tool for most of the design concepts of the proposed 
system. While certain problems or unexpected results were encountered, 
these were largely minor and easily corrected. The overall agreement 
between projected performance and actual operation of the experimental 
hardware further serves to bolster confidence in the design 
methodology. 

Operation of the integrated emulation of the hardware in the 
707 applications environment demonstrated the overall suitability of 
this class of designs to aircraft control situations. 
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APPENDIX I 

The following program, 'states', solves the multiprocessor 
Markov model described in Section 5.3. To recapitulate briefly, there 
are 146 states in the model. Each state is uniquely defined by 8 
parameters: .the number of undetected and detected failures in processor, 
memory, bus and bus guardian units respectively. The system starts out 
in 'All Good' state. The final state is the 'System Fail' state. 
Therefore initially the 'All Good' probability is unity and all other 
state probabilities are zero. The program, first of all, computes all 
the non-zero state transition rates. Having computed the state 
transition matrix which has the dimensions 146 by 146 it computes the 
state probability vector iteratively as a function of time py 
multiplying the transition matrix Q, the old probability vector SP and 
a time-step 'DELTA'. 

The program accepts a number of variables as input. These are 
defined below: 

Numloop: Number of times the program has to be repeated 
with a different set of inputs each time. 

The following set of input variables have to be defined 'Numloop' 
times. 

Iter & Delta: Iteratively update the state probability vector 
'Iter' times using a time-step 'DELTA' 
milliseconds, 

NSKIP: 

P,M,B,G: 

Print the results every 'NSKIP' iterations. 

Initial system configuration defining number 
of processor, memory bus, and bus guardian 
units. 

FP,FM,FB,FG: Failure rates per hour of the respective units. 

FGD,FGE: Failure rate per hour of BGU in the disable and 
enable modes respectively. 
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RP,RMrRB,RG: Recovery rates per hour of the same units. 

The program outputs the following state probabilities: 

PGOOD: Probability of the 'All Good' stae. 

PFAIL: Probability system has failed. 

PSUCCESS: l- System Fail Probability. 

Pl,P2,P3: Probability of having exactly one two or 
three (detected plus undetected) failures. 

PNM: Probability of having N undetected and M 
detected failures for various N and M combin- 
ations. 

A listing of the program "States" follows. 
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CL./1 0PT1n121N6 ConPILLR STATESt: PROCEDLRE OPTIONS(HAIN)i 
DRAPER LAD LISTTIM FORtlATTER CHARLES STARK DRAPER LABDRAl;ToRY, INC. CUBRIDGE, IIASSACHWETTS 

WR LEVEL NEST 

100 

*oooooooo’, ‘00000001’. 
‘00000012’, ‘00000020’, 
‘00000102’. '00000110', 
'00000210'. '00000300', 
'00001011'. '00001020', 
'00002000', '00002001'. 
'00010001', '00010002'. 
'00010101'. '00010110'. 
'00011100'. '00012000'. 
'00021000', '001Q0000', 
'00100020'r '00100100'. 
'00101001'. '00101010'. 
'00110010', '0b110100', 
'90200100'1 '00201000'1 
'01000011', '01000020', 
'01001000'. '01001001', 
'01010001', '01010010', 
'01100010'. '01100100'. 
'02000100'. '02001000'. 
'10000011', '10000020'r 
'10001000'. '10001001'. 
'10010001'. '10010010'. 
'10100010', '10100100'. 
'11000100'. '11001000', 

~'20001000'); 

'00000002', 
'00000021'. 
'00000111'. 
'00001000', 
'00001100', 
'00002010'. 
'00010010'. 
'00010200'r 
'00020000'. 
'00100001', 
'00100101'. 
'00101100'r 
'00111000'. 
'01000000', 
'01000100', 
'01001010'r 
'01010100', 
'01101000'. 
'10000000'1 
'10000100', 
'10001010'. 
'10010100'. 
'10101000', 
'20000000', 

'00000003', '00000010's '00000011'. 
'00000030', '00000100', '00000101', 
'00000120', '00000200'. '000002019, 
'00001001'. '00001002'. '00001010'. 
'00001101', '00001110'. '00001200', 
'00002100'. '00003000', '00010000'r 
'00010011', '00010020'. '00010100'. 
'00011000'. 'OOO1lOO1'r '00011010'. 
'00020001'. '00020010'r '00020100', 
'00100002', '00100010'. '0010001%', 
'00100110', '00100200'. '00101000'r 
'00102000'. '00110000'. '00110001'. 
'00200000', '00200001', '00200010', 
'01000001'r '01000002'. '01000010', 
'01000101', '01000110'r '01000200', 
'01001100', '01002000', '01010000'. 
'01011000'r '01100000'. '01100001'. 
'02000000', '02000001'. '02000010'. 
'10000001', '10000002'r '10000010'. 
'10000101', '10000110'1 '10000200', 
'10001100', '10002000'1 '10010000', 
'10011000'. '10100000', '10100001'. 
'11000000', '11000001'. '11000010'. 
'20000001', '20000010'1 '20000100', 

DECLARE UDRD CHiR(8); 

OECLARE 1 MHflSS,. 2900 : 
1 2 U FIXED OECIHALI2) INITIAL 

:: 
(135)O. (1511, (5)2, (1511, (1012, (15)lr (1512, (15)1, (20121, 

2 0 FIXED OECIIlALl2 1 INITIAL 
1 ~0,~21~1,2r31.2,3,~2~~3,1,2,3ro~2,313~~, 
: 3,2r~4~3r0,1,2,1,2,2,(2~~1,(3~2~,2r01~4~1~0~1~2~1,2,2,~2~~1,~3~2~, 

2r~2~~0,~4~1~,0,1,2,1,2r(2)o2~,2,~3~~0,l4~1~,0,1'2, 
1 l,2,2,(2)(1,(312),2.(4)(0,(4)l))i 

STATCSL: PROCEOWE OPTIONS(HAIN); 

DECLARE STATE( 145 1 CHAR( 8) INITIAL( 

3700 : DECLARE (JP,JHeJB,JB,KP,KIl,KB,KG) FIXED DECIMAL(l); 
3800 1 DECLARE (ZJP,ZJ~,ZJB,ZJGrZKPIZKnrMB,ZKG) CHAR(4); 
3900 I OCL W 146,146 ) FLOAT OECIPIAL( 16 1; 
4000 1 OCL SP( 146 1 FLOAT DECIHALf 16 1 i 
4106 i OCL PXf 146 1 FLOAT DECIMAL(16 1; 
4200 1 DCL fA,PGGDD,PSUCCESt) FLOAT OECIIlAL(16); 
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P 
- 

PL/I OPTIMZING COMPILER STATES2 : PROCEDURE OPTIONS( HAIN I ; 
DRAPER LAB LISTING FORtlATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIOGE, TIASSACHUSETTS 

NMBR LEVEL NEST 

4300 1 OCL MDX FLOAT OECIHAL( 6 1; 
4400 1 PCL IFAIL FIXED DECIHAL(3 1 INITIAL(1461; 
4500 1 OCL ~PU,tlU,BU,GU,PO,tlO,BO,GO, FIXED DECIHAL(1); 
4600 1 OCL (P,H,B,G) FIXED DECIflAL(2); 
4700 1 OCL ~WORO1,UORD2,WORO3,WORO4~ CHAR(B); 
4800 1 OCL ~ZPU,ZflU,ZBU,ZGU,ZPO,ZMO,ZBO,ZGD) CHAR(4); 
4900 ! ' OCL IOELTA.TIHE,ITER) FIXED DECIMAL( 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-.............................................- ,,,,I,,,,*,,,,,,o,,,,,.,,,,.~..~,,,,,,,,,,,,,,,..,..,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
; i 
; /* THE FOLLOWING DEFINES ALL POSSIBLE SYSTEM STATES SUBJECT TO ; 
i UC=2 AND UtD<=3. i 
i I q 1; ; 
; 00 JP = 0 TO 2; L& X400 ¶$ ; 
i 00 JH = 0 TO 2; L& x300 $$ ; 
; OOJB=OTO2; 66X200$4 ; 
i DO JG q 0 TO 2; &h Xl00 $$ ; 
i 00 KP = 0 TO 3; L& x40 a$ i 
: OOKH=OTO3; &&X30*$ ; 
; 00 KB = 0 TC 3; hb x20 $6 ; 

00 KG = 0 TO 3; &I x10 *a i i 
; 
i 
; 
i 
i 
; 
; 
i 
i 
i 
; 
; 
i 
; 
; 
i 
; 
; 
i 
; 
i 
i 
; 
i 
i 
; 
i 
; 
; 
i 
; 
i 
; 

IF I>145 THEN GO TO X400; ; 
IFT JPtJfl>P 1 THEN GO TO X300; i 
IF(JPtJtltJB>2) THEN GO TO X200; ; 
NUH.U(I 1 = JPtJtltJBtJG; i 
IF(NUH.U(I)>P) THEN GO TO X100: ; 
IF(KPtNUIl.U( I I>31 THEN GO TO X40; 
IF(KPtKtltNUtl.U(1)>3) THEN GO TO X30; 
IF~KHtKPtKBtNUfl.U~1)>3) THEN GO TO X20; 
NUH.O(I) = KGtKPtKIltKB; 
IF~NUH.U~IlttJJM.O~I)>3) THEN GO TO X10; 

ZJP = JP; 
ZJII = Jfl; 
ZJB q JB; 
ZJG = JGi 
ZKP = KP; 
ZKH = KH; 
ZKB = KB; 
ZKG = KG; 

STATE(I) =SUBSTR(ZJP.4)~~SUBSTR(ZJH.4)~~SUBSTR(ZJB.4)~~SUBSTR~ZJG.41~ 

; 
i 

SUBSTR(ZKP,4)1 iSUBSTR(,ZKH,4)IiSUBiTR(ZKB,4)I iSUBSTR(ZKG.4); 
PL PUT EDIT (I,STATE(I)) (SKIP(l),Fl3),X(3).A(8)); 

i 
i 
; 
i 
; 
; 
i 
; 
, 
; 
i 
; 
i 
; 

PUT EDIT (ZJP,ZJtl,ZJB,ZJG,ZKP,ZKMsZKB,ZKG) (A(4));$$ 
I = 1t1; 
X10: END; 

X20: END; 
X30: END; 

X40: END; 
X100: END; 

X200: END; 
X300: END; 

X400: END; */ 

i 
; 

; 
i 
i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,,,,,.,,,.,.,,,,,,.,,,,,,,,,,,,,,,,,,,,.,.,,,,,,,,,,,,,. iii;; . . . . . . . . . . . . . . . . OSSSSS~,~,,,,,, 
i 

. . . . . . . . . . . . . . . . . . . . . 

.o.,,,,,,,,,,,,,o,, 
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PL/I OPTItlIZING COflPILER STATES2: PROCEDURE OPTIONSLtlAINti 
DRAPER LAB LISTING FORtiATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIDGE, tlASSACHUSET-TS 

NtlBR LEVEL NEST 

1 
9500 1 
9600 1 

1 
9800 1 

11 
10000 1 1 
10100 1 1 
10200 1 1 
10300 1 1 
10400 1 1 
10500 1 1 

11 
11 
11 

10700 1 1 
11 

10900 1 1 
11000 1 12 
11100 1 12 

1 12 
1 12 

11400 1 12 
11500 1 12 
11600 1 12 
11700 1 12 
11800 1 12 

1 12 
11900 1 12 
12000 1 12 
12100 1 12 
12200 1 12 
12300 1 12 

1 12 
1 12 
1 12 

12500 1 12 
12600 1 12 

1 12 
1 12 
1 12 

12800 1 ii w = Pw1; 
12900 1 12 HU = HU+li 
13000 1 12 BU = BU+l; 
13100 1 12 GU = GU+l; 
13200 1 12 ZPU = PU; 
13300 1 12 ZtllJ = HU; 
13400 1 12 ZBU q BU; 
13500 1 12 ZGU = GU; 
13600 1 12 PU = w-1; 
13700 1 12 Hll = W-1; 

/* READ IN PARAHETER VALUES */ 

GET OATAL NUULOOP 1; 
PUT DATA1 NUtiLOOP I ; 

00 N=l TO NUtlLOOPi 

GET OATAlITER,OELTA,NSKIP)i 
PUT OATAtITER,OELTA,NSKIP)i 
GET OATA(P,tl.B,Gt; 
PUT OATA(P,tl,B,Gt; 
GET OATA(FP,Ftt,FB,FG,FGO.FGE.RP,RH,RB.Rt)i 
PUT DATA(FP,Ftt,FB,FG,FGO,FGE,RG)i 

/* THE FOLLOWING DEFINES THE ELEMENTS OF THE TRANSITION INTENSITY X 9 * 

MATRIX */ 
9 = 0; 

00 I = 1 TO 145: /I x1000 */ 
IF NUll.O(Il = 3 THEN GO TO S-FAIL; /* ONLY TRANSITION FROM 0=3 IS (FAIL) l / 
# TO SLFAIL) */ 

/* OBTAIN THE PRESENT STATE’S PARAMETERS l / 
PU = SUBSTRLSTATE(I),l.l)i 

HU = SUBSTR(STATElI),2,1); 
BU = SUBSTR(STATE(I),3,1); 
GU = SUBSTR(STATE(I),4rlti 
PO = SUBSTR(STATEII),5,1); 
HO = SUBSTR(STATE(I),6,lli 

5; = SUBSTR(STATE(Il,7,11; 
= SU3STRLSTATE(I),8,11; 

POX = GO*P/(PrH); 
HOX = GO*H/(P+H); 
IF (3-BO)>3 THEN BX=B-BO; ELSE BX=3; 

/* ANOTHER FAILURE IN ANY OF THE FOLLOWING CASES KILLS THE SYSTEM */ 

IF(NUH.U(I) = 2) THEN GO TO S-FAIL; 
IF(NUM.U(I)+NUH.O(I~=3~ THEN GO TO S-FAIL; 

/* FIND THE STATES TO WHICH TRANSITIONS TAKE PLACE FROM STATE I r/ 
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PL/I OPTIJlIZING CC’HPILER STATESL: PROCEDURE OPTIOHS(HAINJ; 
DRAPER LAB LISTING FORHATTER CHARLES STARK DRAPER LAGORATORY, INC. CAMRIDGE, J4ASSACHUGETTS 

NMBR LEVEL NEST 

13800 
13900 
14000 
14100 
14200 
14300 
14400 
14500 
14600 
14700 

14900 
15000 
15100 
15200 
15300 
15400 
15500 

15700 
15800 
15900 
16000 
16100 
16200 
16300 
16400 

16500 
16600 
16700 
16800 
16900 
17000 
17100 

17200 
17300 
17400 
17500 
17600 
17700 

17900 

18000 
18100 
18200 
18300 
18400 

1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 12 
1 12 
1 12 
1 12 
1 123 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 123 
1 123 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 123 
1 123 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 1234 
1 123 
1 123 
1 1234 
1 1234 
1 1234 
1 1234 

18500 1 1234 

BU = GU-1; 
6U = GU-1; 
WORD1 = SUGSTR(ZWr4J~~SUBSTR~STATE~IJ,2,7J; 
uGRD2 = SUBSTR~STATE~I~.1,1J~~SUBSTR~Z~,4J~~S~STR~STATElIJ,3,6~; 
WORD3 = SUBSTR(STATE(I),1,2J~~SUBSTR~ZBU,4)~~SUL)STR~STATE~IJ,4,5Ji 
WORD4 = SUBSTR~STATE~IJ,1,3J~~SUBSTR~ZGU,4J~~SUBSTR~STATE~IJ,5,4~; 
11 = SMJHLWORDlJ; 
;‘3 q SNUti~WDRD2Ji 

= SJiUH(UORO3J; 
14 = SNUtUUORD4J; 

/* THE FOLLOWING 4 TRANSITION3 ARE FRDJI STATES U=O W 

IF 

IF 

NUH.U(IJ = 0 THEN DO; 
G(IsIlJ = ( P-PO-PDX WFP; 
G(III2J q (H-HLJ-HDXJ*FH; 
G(I.13) = LB-BDJ*FBi 
G(I.14J q 2*( P-PO-PDXtJl-MD-JQX J*FG; 
PUT D~TA~9~1,11J,9~1.12~r9~1,13~,G~1,14~J SKIPLlJ; 
END; 

/* THE FOLLOWING 20 TRANSITIONS ARE FRDH STATES U=l l / 

Nl.M.u~I~ = 1 THEN DO; /* x500 */ 
W = 1 THEN DO; IF 
P(I,IlJ = (P-i’D-PDX-3J*FPi 
G(I,I2J = t H-JIO-HDX J*FtJ; 
9(1,13J = (B-BO-2 l*FB; 
W I ,I4 J = 2*( P-PO-POXtJJ-HD-HDX-3 J*FG t 4*FGE; 
WIsIFAILJ = 2*FP+2*FBt4*FGD; 
EM); 

IF MI = 1 THEN DO; 
GTI,Ill = (P-PO-POXJ*FPi 
G(I,I2J = (H-HO-HDX-3J*FJJ; 
w1,131 = (B-BO-2 J*FB; 
G(I,I4J = 2*(P-PO-PDX+H-HD-JGJX-3l*F6 t 4*F6E; 
GLI,IFAILJ = 2*FH+2*FBt4*FGDi 
END; 

IF BU = 1 THEN DO; 
G~IsIlJ = (l-2/5X)*( P-PD-PDX J*FP: 
$(1,12J = (I-2/-BXJ*(H-HD-HOXJ*FH; 
GLIII3J = (5BO-lJ*FB - 6*FB/BX; 
G(III4J = (2-4/BXJr(P-PO-POX+H-W-HDXJ*FG t (4/8XJ*(P-PD-FDXtJi-HD-t5JXJ*FGE; 
WI,IFAILJ = (3/BXJ*(2*FBt2*(P-PD-FDXJ*FP/3 t t*Lll-HD-JiDXJ*FW3 t 

4WP-PD-PDXtJi-tlO+JDXJ*FGD/3J; 
END; 

IF 6U = 1 THEN DO; 
P(I,IlJ = (P-PO-POX-P/( PtHJ J*FP; 
9(1,12J = (H-JID-HDX-W(PttlJJ*FH; 
G(I.13J = (I)-SO-tJ*FBi 
G(IrI4J q 2W P-PO-PDXtJl-JQ-HDX J*F6 - f 4*FGEtFGD J i 
G(I,IFAILJ = 4tfFGD t FGE t P*FP/(PtJlJ t JJ*FIWPttiJ t 2*FBi 
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PL/I OPTItiIZING COtlPILER STATES2: PROCEDURE OPTIONS(tlAINt; 
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIOGE, MSSACHUSETTS 

NtlBR LEVEL NEST 

18600 1 1234 
1 123 

18700 1 123 
1 123 

18800 1 123 
1 12 

18900 1 12 
1 12 
1 12 
1 12 

19100 1 12 
1 12 
1 12 
1 12 

19400 1 12 
19500 1 12 

1 12 
1 12 
1 12 
1 12 

19800 1 12 
19900 1 123 
20000 1 123 
20100 1 123 
20200 1 123 
20300 1 123 
20400 1 123 
20500 1 123 

1 123 
20700 1 123 

1 123 
20800 1 123 
20900 1 123 
21000 1 123 

1 12 
21100 1 12 
21200 1 123 
21300 1 123 
21400 1 123 
21500 1 123 
21600 1 123 
21700 1 123 
21800 1 123 

1 123 
1 123 
1 123 

22100 1 123 
22200 1 123 
22300 1 123 
22400 1 123 

1 12 
22500 1 12 
22600 1 123 
22700 1 12.3 
22800 1 123 

x500: END i 

IF NUH.U(It>O THEN GO TO RECOVER; ELSE GO TO X1000; 

/* THE FOLLOWING ARE TRANSITIONS FROM STATES U=2 OR 0=3 

S-FAIL: 

OR UtD=3 TO SYSTEM FAIL STATE */ 

Q(I,IFAIL) = (P-PO-POX-PUl*FP t tH-HD-HOX-tlUt*Ftl + (B-BO-BU)*FB 
+ 2*(P-PO-POX-PUttI-tlO-tlOX-tlUt*FG; 

PUT OATA(Q(IsIFAILtt SKIP(l); 
IF NUll.U(It>O THEN GO TO RECOVER; ELSE GO TO X1000; 

two; 

PUT OATA~Q~I,I1~,Q~I,I2~,Q~I,f3~,QfI,I4~rQ~I,IFAIL~~ SKIP(l); 

/* THE FOLLOWING TRANSITIONS TAKE PLACE WHEN A FAULT IS DETECTED 
AND THE SYSTEH RECOIJFIGURES */ 

RECOVER: IF PU>O THEN DO; 
PU = PU-1; 
PO = POtl; 
ZPU = PUG 
ZPO = PO; 
PU q pu+1; 
PD = PD-1; 
WORD1 = SUBSTR(ZPU.4tt ISLlBSTR(STATE(It,2,3ti 1 

SL’BSTR(ZPO,4tiiSUBSTR(STATE(It,6,3t; 
11 = SNUM UOROl); 

Q(I,Il) = PU*RP; 
PUT OATA(Q(I,Il)) SKIP(l); 
END; 

IF tlU>O THEN 00; 
MU = w-1; 
MD = not1; 
ztlu = tlu; 
zno = no; 
MU = nut1; 
MD = MO-l; 
WORD2 = SUBSTR(STATE(It,l,lt~~SUBSTR(ZtlU,4)11 

SUBSTR(STATE(It,3,3tI ~SUBSTR(ZllO,4t~ I 
SUBSTR(STATE(It,7,2); 

12 = SNUfl( WORD2 1 i 
Q(I.12) = tlU*Rtl; 
PUT OATA(Q(I,IP)) SKIP(l); 
END ; 

IF BU>O THEN 00; 
BU = BU-1; 
BD = @Otl; 
ZBU = BU; 
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PL/I OPTIHIZING COilPILER STATES2: PROCEDURE OPTIONS(tlAIN); 
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, FlASSACHUSETTS 

NHBR LEVEL NEST 

22900 1 123 
23000 1 123 
23100 1 123 
23200 1 123 

1 123 
1 123 

23500 1 123 
23600 1 123 
23700 1 123 
23800 1 123 

1 12 

ZBO = BO; 
BU = BUtl; 
00 = BD-1; 
WORD3 = SUBSTR(STATE(I),l,2tiISUBSTR(ZBU,4)ii 

SUBSTR(STATE(I),4,3)ltSUBSTRfZBO,41I1 
SUSSTR(STATE(I),8,1); 

13 = SNUtl( WORD3 1; 
Q(I,I31 = BUXRB; 
PUT DATA(Q(I,I3)) SKIP(l); 
END ; 

-IF 23900 1 12 
24000 1 123 
24100 1 123 
24200 1 123 
24300 1 123 
24400 1 123 
24500 1 123 
24600 1 123 

1 123 
24800 1 123 

1 123 
24900 1 123 
25000 1 123 
25100 1 123 i 

1 12 
25200 1 12 

11 
11 
11 

25400 1 1 
25500 1 1 
25600 1 12 
25700 1 12 
25800 1 123 
25900 1 123 

1 12 
26000 1 12 
26100 1 12 
26200 1 12 

11 
11 
11 

26400 1 1 
26500 1 1 
26600 1 1 
26700 1 1 
26800 1 1 
26900 1 12 

1 12 
1 12 /* COtlPLJTE NEW P VECTOR */ 

x1000: END; 

GU>O THEN 00; 
GU = GU-1; 
GO = GDtl; 
ZGU = GU; 
ZGD = GD; 
GU = GU+l; 
GO .= GO-l; 
WORD4 = SUBSTR(STATE(I),1,3)IiSUBSTR(ZGU,4)tl 

SUBSTR~STATE(I),5,3)~~SUBSTR(ZGO,4); 
14 = SNlJtl(WDRD4); 

Q(I,I4) = GU*RG; - 
PUT DATA(Q(I,I4)) SKIP(l); 
END ; 

/* tlAKE THE DIAGONAL ELEMENTS OF 9 SUCH THAT ROWS OF 9 SUM TO 

Q = Q*OELTA/3600000.; /*DELTA IS IN tlILLISECONDS*/ 
DO I = 1 TO 146; 

A = O;, 
00 J = 1 TO 146; 

A = A + Q(I,Jt; 
END ; 

Q(I,I) = 1 - A; 
PUT OATA(Q(I,I)) SKIP(l); 
END; 

/* INITIALIZE P VECTOR */ 

SP = 0; 
SP11) = 1; 
TIME = 0; 
NSKIPl = NSKIP; 
00 K q 1 TO ITER; 

TIME = TIHEtOELTA; 
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PLY1 OPTIflIZING COMPILER STATESL: PROCEDURE OPTIONS~HAIN); 
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, MASSACHUSETTS 

NHBR LEVEL NEST 

27100 
27200 
27300 
27400 
27500 
27600 

27700 
27800 
27900 
28000 
28100 
28200 
28300 
28400 
28500 
28600 
28700 
28800 
28900 
29000 
29100 
29200 
29300 
29400 
29500 

29600 
29700 
29800 
29900 

30100 
30200 
30300 
30400 
30500 

30600 

30700 
30800 
30900 
31000 

31200 

31300 

31400 

1 12 
1 12 
1 123 
1 1234 
1 1234 
1 123 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
1 12 
11 
11 
1 12 
1 12 
11 
1 
1 
1 
1 
2 
2 
2 
2 

PX q 0; 
DO I = 1 TO 146; 

DO J = 1 TO 146; 
PXCI) = P(J,I)*SP(Jl t PX(I); 
ENDi 

END; 

SP = Px; 
NSKIPl q NSKIPl-1; 
IF(NSKIPl>O) THEN GO TO X2500; 
NSKIPl = NSKIP; 
PGDDD = SP(1); PFAIL = SP(146); PSUCCESS = l-SP(146); 
PO1 = 0; PlO = 0; 
P20 = 0; Pll = 0; 
PO2 = 0: 
P12 = 0; P21 = 0; PO3 q 0; 
DO I=2 TO 145; 

IF NUn.U(I)=l & NUM.D~II=O THEN PlO = PlOtSP(1); 
IF NUtl.lJ(I)=O & NlJfl.D(I)=l THEN PO1 = POl+SP(I); 
IF NUll.U(1)=2 & NUH.D(I)=O THEN P20 q PPOtSP(1); 
IF kwn.utr)=i b hUH.D(II=l THEN P11 = PlltsP(Il; 
IF NUtl.U(I)=O & NUtl.D(I)=2 THEN PO2 q PO2tSP(Ili 
IF NUH.U(I)=l & NUIl.D(1)=2 THEN P12 = P12tSP(I); 
IF NLM.U(11=2 & NUtl.D(Il=l THEN P21 = PPltSP(1); 
IF Nun.urI)=o L NUPI.DII)=~ THEN ~03 = p03tspfr); 
END ; 

Pl = PlotPol; 
P2 = P2o+P11tPo2; 
P3 = P2l+Pl2tPo3; 
PUT EDIT(‘SYSTEn RELIABILITY STATISTICS AT TItiE = ‘,TftiE,’ IISEC., STEP = ‘t 

DELTA. ’ IISEC.‘) (PAGE,LINE~2),A,F~lO)rA,F(lO),A)i 
PUT DATA(PGODD) SKIP(41; PUT DATACPFAIL) SKIP(2); PUT DATAfPSUCCESSl SKIP(21; 
PUT DATA(P1) SKIPIPI; PUT DATAIP2) SKIP(P); PUT DATA(P3) SKIP(P); 
PUT DATA(P10) SKIP(4); PUT DATAfPOl) SKIPlO); 
PUT DATAcP20) SKIP(41; PUT DATA(Pl1) SKIP(2); PUT DATA(PO2) SKIP(t); 
PUT DATA(P21) SKIP(4); PUT DATA(Pl2) SKIP(Z); PUT DATA(P03) SKIP(2); 

x2500: END; 

IF N=NUHLODP THEN DO; 
PUT DATA( 
END; 

END; 

/* FUNCTION STATE NUMBER */ 

.sHun: PROCEDURE(WORDX1; 

DCL WORDX CHAR(B); 

J = 0; 
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PI./1 CtPTIttIZING COMPILER STATES;!: PROCEDURE OPTIONS~HAINl; 
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIDGE, MASSACHUSETTS 

NIIBR LEVEL NEST 

31500 2 
31600 2 1 

21 
31800 2 1 

31900 f 
32000 2 

1 
32100 1 

00 Jl = 128,64,32,16,8,4,2,1; 
IF JtJ1<145 THEN 

IF WORDX>=STATE(JtJl) THEN J=JtJl; 
END; \ 

RETURN(J1; 
END SNUlj; 

END STATESL; 
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APPENDIX II 

The following program, 'Cardsfj', solves the multiprocessor 
Markov model described in Section 5.4. This program is similar to 
"States. The only major difference is that it solves a simpler ll-state 
model. In addition, a variable time-step is used to update the state 
probability vector. The program accepts the following additional 
input variables that are different from those used by the preceding 
program. 

Nl,N2,NSKIPl,NSKIP2: The program, Cards5, first updates the 
state probability vector Nl times using a time-step Delta milliseconds 
and prints the results every NSKIPl iterations. 

Then it updates the vector N2 times using a time-step 4 Delta 
milliseconds and prints the results every NSKIPZ iterations. 

The other input and output variables for Cards5 are same as 
those for "States'! A listing of the Cards5 program follows. 
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PL/I OPTInIZING COMPILER CARD%: PROCEDURE OPTIDNSLHAIN); 
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, IIASSACHWETTS 

SOURCE LISTING 

NHBR LEVEL NEST 

100 CARDS5 : PROCEDURE OPTIONSf MAIN 1; 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

: 
1 
1 
1 

1' 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2200 1 
1 

2300 1 
2400 1 
2500 1 
2600 1 
2700 1 

/* 

/* 

/* 

/* 

/I 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

THIS PROGRAIl SOLVES A CARDS HARKOV MODEL FOR LACK OF */ 

PERFECT COVERAGE. SYSTEM STATE PROBABILITIES ARE */ 

COHPUTED AS A FUNCTION OF TIME. THIS FlODEL IS AN ll-STATE */ 

IIODEL USED FOR HARD FAILURE ANALYSIS. */ 

DEFINITIONS */ 

Q = STATE TRANSITION MATRIX (WITH EACH ROY SUMHING TO UNITY */ 

SP = STATE PROBABILITY VACTOR */ 

PX = INTERtVEOIATE STATE PROB. VECTOR (WORK SPACE) */ 

L = DItlENSION OF 9, SP AND PX */ 

DELTA = INITIAL TIME STEP FOR ITERATIVE SOLUTION */ 

TIME = TIflE OF SOLUTION */ 

Nl = GITERATIONS FOR WHICH TIM-STEP IS DELTA */ 

N2 = *ITERATIONS FOR WHICH TIME-STEP IS DELTA*MH */ 

NSKIPl q SKIP NSKIPl ITERATIONS BETWEEN PRINTING RESULTS FOR */ 

FIRST Nl ITERATIONS*/ 

NSKIP2 = SKIP NSKIPL ITERATIONS BETWEEN PRINTING RESULTS FOR */ 

NEXT N2 ITERATIONS */ 

ALGORITHM */ 

SP(N+l) q Q*SP( N )*DELTA */ 

DCL Q(ll,ll) FLOAT DECItlALt 16 1 i 

DCL SP(l1) FLOAT DECItlAL(16); 
DCL PX(l1) FLOAT OECIllALf 16 1; 
DCL (A,PGOOD,PSUCCESS) FLOAT DECIHAL(16); 
DCL T P,H,B) FIXED DECItlALt 2 1 i 
DCL (DELTA,TITlE) FIXED DECIFlAL(lO)i 
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PL/I OPTIHIZING COMPILER CARDSI: PROCEDURE OPTIONS(HAIN); 
DRAPER LAB LISTING FORtiATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, HASSACHUSETTS 

NIIBR LEVEL NEST 

2800 1 DCL TNl,N2) FIXED DECITlAL(6 1; 

1 
3200 1 
3300 1 

1 
3500 1 

11 
3700 1 1 
3800 1 1 
3900 1 1 
4000 1 1 
4100 1 1 
4200 1 1 
4300 1 1 
4400 1 1 
4500 1 1 
4600 1 1 

11 
4800 1 1 9 = 0; 
4900 1 1 L = 11; 

6400 1 1 

11 
5300 1 1 
5400 1 1 

6500 1 1 

5500 1 1 
11 

5700 1 1 
5800 1 1 
5900 1 1 
6000 1 1 

11 
6200 1 1 
6300 1 1 

11 
6700 1 1 
6800 1 1 
6900 1 1 
7000 1 1 

11 
7200 1 1 
7300 1 1 
7400 1 1 
7500 1 1 
7600 1 1 
7700 1 1 

/* READ-IN DATA */ 

GET OATAt NUTILOOP 1; 
PUT OATAt NUHLOOP 1; 

NUH: DO N = 1 TO NUMLOOP; 

PUT EDIT( ‘N = ‘,NT (PAGE,LINE(2),A,F(21); 
GET DATA(P,tl,B); 
PUT OATAf P,tl,B) SKIPT 2 1; 
GET OATA(FP,Ftl,FB); 
PUT DATA(FP,F?lrFB) SKIPIP); 
GET DATA(RP,RtlrRB); 
PUT DATA(RP,RflsRB) SKIP(Z); 
GET DATA(N1,N2,DELTA,NSKIPi,NSKIP2,tEl); 
PUT DATA(Nl,NZ,DELTA) SKIP(L); 
PUT DATA(NSKIPl,NSKIPZ,Htl) SKIP(2); 

/* FAILURE TRANSITIONS ------------- RECOVERY 

Q(1,2) = P+FP; Q(2,l) = RP; 
Q(l.3) = M*FM; Q(3,l) = Rtl; 
Q(1.4) = B+FB; Q(4.1) = RB; 

Q(2,5) = ( P-3 )*FP; Q(5,21 = 2*RPi 
Q(2,63 = tl*FH; 9(6,2) = RM; 
Q(2,lO) = (B-2)*FB; 
Q(2,ll) = 2*(FPtFB)i 

Q(10.2) = RB; 

Q(3,8) = (8-2l*FB; Q(8,3) q RB; 

Q( 3.6 I 

Q(3,ll) = Z*(Fll+FB); 

= P*FP; Q(6,3) = RP; 
Q(3,7) = (!+3)*Ftl; Q(7,3) = 2WRtl; 

TRANSITIONS */ 

Q(4,8) = Tl.-2./B)*tT*Ffli QT8,4) = RR; 
Q(4,9) = (B-l.-C./B)*FBi Q(9,4) = 2*RB; 
Q(4,lO) = (l.-2./B)*P*FP; Q(lO,4) q RP; 
Q(4.11) = (2./B)w(P*FPtM*Fnt3*FB);/*(3/B)((2/3)+P+FPt(2/3)*H*F~t2FB*/ 

Q(5rll) = TP-2)*FP + H*F?l + B*FBi 
P(6,ll) = (P-ll*FP t (tl-l)*FM t B*FB; 
Q(7,ll) = P+FP t (tl-2 )*FH t B*FB; 
Q(8,ll) = PWFP t (H-1 )*Ftl ‘t (B-l )*FB; 
Q(9.11) = PWFP t tl*Ffl t (B-2MFB; 
Q(lO,llJ = (P-l l*FP t H+Ffl t (B-1 )*FB; 
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'L/I OPTINIZING CCMPILER CARDSI: PROCEDURE OPTIONSCNAINt; 
IRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. C-RIDGE, NASSACHUSETTS 

NNBR LEVEL NEST 

8000 
8100 
8200 

11 
11 
11 
11 

: : 
11 
11 
11 
1 12 
1 12 
1 123 
1 123 
1 12 
1 12 
1 12 
1 123 
1 123 
1 123 
1 1234 
1 1234 
1 123 
1 123 
1 123 
1 123 
1 12 
1 12 
1 12 
1 12 
1 123 
1 123 
1 123 
1 12 
1 12 
1 123 
1 123 
1 123 
1 12 
1 12 
1 12 
1 12 
1 12 
1 123 
1 123 
1 123 
1 123 
1 123 
1 123 
1 1234 
1 12345 
1 12345 
1 1234 

/* INITIALIZE P VECTOR l / 

SP = 0; 
SPTlT q 1; 
TIME = 0; 

8400 9 = 9*DELTA/3600000.; /*DELTA IS IN MSECSW 

8600 
8700 
8800 
8900 
9000 

Lt: 00 K2 q 1 TO 2; 
IF K2>1 THEN IF N2=0 THEN 60fO L5; 
IF K2>1 THEN DO; /* INCRENENT STEP-SIZE NM-FOLD SECOND TIIIEW 

6 q cf*tm; 

END; 

9100 
9200 
9300 
9400 
9500 
9600 
9700 

PUT EDIT(' ‘1 tSKIPt4t.A); 
DO I q 1 TO L; 

P(I.1) = 0; 
A q oi /* COMPUTE DIAGONAL ELEMENTS OF Q SUCH THAT ROWS SUN TO I*/ 
DO J = 1 f0 Li 

A = AtQl1.J); 
ENDi 

9800 
9900 

10000 

Q(I,I) = 1.-A; 
PUT DATA((I(I,I)) SKIP(l); 
END; 

/* PUT DATAlQt */ 

10200 
10300 
10400 
10500 

L8: IF K2-1 THEN DO; 
Ml q Nli 
NSKIP = NSKIPI; 
END; 

10600 
10700 
10800 
10900 

ELSE DO; 
Ml = N2; 
NSKIP = NSKIPZ; 
ENDi 

11000 
11100 

NSKIPS = NSKIP; 
Jl = 1; 

11300 
11400 

Ll: DO Kl = 1 TO Ill; 
TIUE = TIflEtDELTA; 

/* COHPUTE NEW P VECTDR l / 

11600 
11700 
11800 
11900 
12000 
12100 

PX = 0; 
00 I-l TO Li 

DO J=l TO L; 
PX(I) = QlJ,I)*SP(J) + PXIIti 
END; 

END; 
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NNBR LEVEL NEST 

12200 1 123 
12300 1 123 
12400 1 123 
12500 1 123 
12600 1 123 
12700 1 123 
12800 1 123 
12900 1 123 
13000 1 123 

1 123 
13200 1 123 
13300 1 123 
13400 1 123 

1 123 
13600 1 123 

1 123 
1 123 

13800 1 123 x99: 
1 123 

14000 1 123 
14100 1 123 
14200 1 123 

SP-Px; 
NSKIP3 = NSKIP3-1; 
IF (NSKIP3>0) THEN GOT0 X100; 
NSKIP3 = NSKIP; 
PGOOO = SP( 1) i 
PFAIL = SPlll); 
PSUCCESS = l.-SPLll); 
;; = sqL2)+sPI3)+sPl4); 

= SP(5)+SPl6)+SP(7)+SP18)+SPo+SP0; 

Jl = Jl-1; 
IF I Jl>O) THEN GOT0 X99; 
Jl = 12; /* PRINT 12 SETS OF DATA OH A PAGE */ 

PUT EDITL’STEP-SIZE q ‘,DELTA,’ MSEC, N q 'rN) LPAGE,LINE(2),A,F(lO)r 
AIF(P 

SECONDS q TIME/lOOO; 
IHOURS = SECONDW3600; 
IMINUTES q (SECONDS-3600*IHOURS)/bO; 
ISECONDS = SECONDS-3600rIHOURS-6O*IMINUTES; 
PUT EDITL'TIHE q ',IHOURS,' HR ',IMINUTES,' MIN ', ISECONDS, 

’ SEC PGOOD = ‘,PGOOD,’ PFAIL = 'rPFA1l.v' PSUCCESS = ‘,PSUCCESS) 
~SKIP~2~,A.Fl2~,A,F~2~,A,F~2~,A,E~llr5)rA,E~ll,5~,A,E~ll,5~~; 

PUT EDITl'Pl = ',Pl,' P2 = ',P2) (SKIP(1),COLUMN(32).A,ELll,5), 
A,ELllr5)); 

14300 1 123 
1 123 
1 123 

14600 1 123 
1 123 
1 123 

14800 1 123 x100: 
1 12 

14900 1 12 
15000 1 12 
15100 1 12 

11 
15200 1 1 

1 
15300 1 

END Lli 

DELTA = DELTA*MM; 
PUT DATAL SP 1 i 
END L2; 

END NUM; 

END CARDSS; 
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